精英家教网 > 高中数学 > 题目详情
13.已知tan(α+$\frac{π}{4}$)=2cos2α,求α的值.

分析 利用两角和的正切函数以及二倍角的余弦函数化简方程,然后求解角的值.

解答 解:tan(α+$\frac{π}{4}$)=2cos2α,
可得$\frac{1+tanα}{1-tanα}$=2(cos2α-sin2α),
可得$\frac{cosα+sinα}{cosα-sinα}$=2(cos2α-sin2α),
(cosα+sinα)(1-2(cosα-sinα)2)=0.
可得cosα+sinα=0或1-2(cosα-sinα)2=0;
解得:tanα=-1或cosα-sinα=±$\frac{\sqrt{2}}{2}$.
由tanα=-1,可得α=k$π-\frac{π}{4}$,k∈Z,
由cosα-sinα=±$\frac{\sqrt{2}}{2}$.可得:$\frac{\sqrt{2}}{2}cos(α+\frac{π}{4})=±\frac{\sqrt{2}}{2}$,
即$cos(α+\frac{π}{4})=±1$,解得α=kπ$-\frac{π}{4}$,k∈Z.
综上α的值为α=kπ$-\frac{π}{4}$,k∈Z.

点评 本题考查两角和的正切函数,二倍角公式的应用,考查化简求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,则不等式f(f(x))≤3的解集为(  )
A.(-∞,1]B.(-∞,$\sqrt{2}$]C.(-∞,$\sqrt{3}$]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.底面是菱形的直四棱柱中.它的对角线长为9和15.高是5.求该直四棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设向量$\overrightarrow{AB},\overrightarrow{CD}$分别在两条异面直线上,M,N分别为线段AC,BD的中点.求证:向量$\overrightarrow{AB},\overrightarrow{CD},\overrightarrow{MN}$共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-3x+2,g(x)=2x,设h(x)=f[g(x)].
(1)求h(x)的解析式;
(2)求h(x)的减区间;
(3)求h(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求过(3,1)点,且与两平行直线l1:x+2y+3=0,l2:x+2y-7=0都相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若{x|2x-a=0}⊆{x|-1<x<3},则实数a的取值范围是(-2,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若R上的奇函数y=f(x)在[1,3]上单调递增,则y在[-3,-1]上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x||x-a|<1,x∈R},B={x|y=$\frac{1}{\sqrt{{x}^{2}-6x+5}}$}.若A∩B=∅,则实数a的取值范围是(  )
A.{a|0≤a≤6}B.{a|a≤2,或a≥4}C.{a|a≤0,或a≥6}D.{a|2≤a≤4}

查看答案和解析>>

同步练习册答案