分析 (1)运用分段函数的解析式,由第二段的解析式,计算即可得到;
(2)由第二段的解析式,计算即可得到所求;
(3)先求f(4)=8,再求f(f(4))=f(8),计算即可得到所求值.
解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x-4),x>4}\\{{2}^{x-1},x≤4}\end{array}\right.$,
(1)f(-1)+f(0)+f(1)=2-2+20-1+21-1
=$\frac{1}{4}$+$\frac{1}{2}$+1=$\frac{7}{4}$;
(2)f(6)+f(8)=log2(6-4)+log2(8-4)
=1+2=3;
(3)f(4)=24-1=8,
f(f(4))=f(8)=log2(8-4)=2.
点评 本题考查分段函数的函数值的求法,注意运用各段的解析式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4,1 | B. | 3,2 | C. | 4,2 | D. | 3,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com