| A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
分析 由函数与导函数图象间的关系,函数的单调性对应导函数的函数值的正负,由此利用函数的单调性即可函数在某点取得极值,结合图象的对称性从而作出正确结果.
解答 解:如图示:,![]()
∵其导函数的函数值应在(-∞,-2)上为正数,在(-2,2)上为负数,在(2,+∞)上为正数,
由导函数图象可知,函数在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数,
∴函数在x=-2取得极大值,在x=2取得极小值,且这两个极值点关于(0,f(0))对称,
由f(x)的极大值与极小值之和为$\frac{2}{3}$,得
f(-2)+f(2)=2f(0),
∴$\frac{2}{3}$=2f(0),
则f(0)的值为$\frac{1}{3}$,
故选:C.
点评 本题考查了导数在函数单调性中的应用,函数与其导函数的图象间的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{5}{13}$ | B. | $\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com