精英家教网 > 高中数学 > 题目详情
13.如图所示:一张正方形状的黑色硬质板,剪去两个一样的小矩形得到一个“E”形的图形,设小矩形的长、宽分别为a,b(2≤a≤10),剪去部分的面积为8,则$\frac{1}{b+1}$+$\frac{9}{a+9}$的最大值为(  )
A.1B.$\frac{11}{10}$C.$\frac{6}{5}$D.2

分析 由题意,2ab=8,b=$\frac{4}{a}$,从而将问题转化为关于a的函数,利用基本不等式,即可得出结论.

解答 解:由题意,2ab=8,∴b=$\frac{4}{a}$,
∵2≤a≤10,
∴$\frac{1}{b+1}$+$\frac{9}{a+9}$=$\frac{1}{\frac{4}{a}+1}$+$\frac{9}{a+9}$=1+$\frac{5}{a+\frac{36}{a}+13}$$≤1+\frac{5}{13+2\sqrt{a•\frac{36}{a}}}$=$\frac{6}{5}$,
当且仅当a=$\frac{36}{a}$,即a=6时,$\frac{1}{b+1}$+$\frac{9}{a+9}$的最大值为$\frac{6}{5}$,
故选:C.

点评 本题考查利用数学知识解决实际问题,考查基本不等式的运用,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程是psin($θ-\frac{π}{6}$)=0,且曲线C1与曲线C2在第一象限的交点为A,长方形ABCD的顶点都在C1上(其中A,B,C,D依逆时针次序排列)求点A,B,C,D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:?x0∈(0,+∞),e${\;}^{{x}_{0}}$+x0=5.命题q:?x∈(0,+∞),$\frac{3}{x+1}$+x≥2$\sqrt{3}$-1.那么,下列命题为真命题的是(  )
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{π,x=0}\\{0,x<0}\end{array}\right.$,则f(-π)等于(  )
A.0B.9C.π2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=sin(2x+$\frac{π}{3}$)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后的图象关于y轴对称,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合$A=\{x|\frac{5-x}{x+1}≥1\}$,集合B={x||x-m|≤2},若A∩B≠∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(4,-2),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)=-3,则f(5-a)=(  )
A.-$\frac{7}{4}$B.-$\frac{5}{4}$C.-$\frac{3}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.奇函数f(x)在(0,+∞)上递增,且f(-2)=0,则不等式 $\frac{f(x)-f(-x)}{x}$<0的解集为(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

同步练习册答案