精英家教网 > 高中数学 > 题目详情
3.已知Sn是等比数列{an}的前n项和,若S2=1,S4=3,则S8=15.

分析 利用等比数列的通项公式与前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q,显然q≠1,${S_2}=\frac{{{a_1}(1-{q^2})}}{1-q}=1$,${S_4}=\frac{{{a_1}(1-{q^4})}}{1-q}=3$,
由$\frac{S_4}{S_2}=3$得q2=2,
∴${S_8}=\frac{{{a_1}(1-{q^8})}}{1-q}=\frac{{{a_1}(1-{q^2})}}{1-q}(1+{q^2})(1+{q^4})=15$.
故答案为:15.

点评 本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正四棱柱底面边长为1高为2,俯视图是一个面积为1的正方形,则该正四棱锥的正视图的面积不可能等于(  )
A.2B.2.5C.2$\sqrt{3}$-1D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设min{p,q}表示p,q两者中的较小者,若函数f(x)=min{3-x,log2x},则满足f(x)≤$\frac{1}{2}$的x的集合为(  )
A.(0,2]∪[$\frac{5}{2}$,+∞)B.[$\sqrt{2}$,$\frac{5}{2}$]C.(0,$\sqrt{2}$]∪[$\frac{5}{2}$,+∞)D.(0,$\sqrt{2}$)∪($\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知各项均为正数的数列{an}的前n项和为Sn,对任意n∈N,都有1,$\sqrt{{S}_{n}}$,an成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn+1+(-1)nbn=an(n∈N),求数列{bn}的前60项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为得到g(x)=cosωx的图象,则只要将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{2}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow m=({0,1}),{θ_n}$是向量${\overrightarrow{OA}_n}$与$\overrightarrow m$的夹角,则$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_{2015}}}}{{sin{θ_{2015}}}}$的值为$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=sin($2x-\frac{π}{3})$的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知0<x1<x2<x3,a=$\frac{{{{log}_2}(2{x_1}+2)}}{x_1},b=\frac{{{{log}_2}(2{x_2}+2)}}{x_2},c=\frac{{{{log}_2}(2{x_3}+2)}}{x_3}$,则a、b、c的大小关系为(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某正三棱柱的三视图如图所示,其中正(主)视图是正方形,该正三棱柱的侧视图的面积是(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案