分析 利用等比数列的通项公式与前n项和公式即可得出.
解答 解:设等比数列{an}的公比为q,显然q≠1,${S_2}=\frac{{{a_1}(1-{q^2})}}{1-q}=1$,${S_4}=\frac{{{a_1}(1-{q^4})}}{1-q}=3$,
由$\frac{S_4}{S_2}=3$得q2=2,
∴${S_8}=\frac{{{a_1}(1-{q^8})}}{1-q}=\frac{{{a_1}(1-{q^2})}}{1-q}(1+{q^2})(1+{q^4})=15$.
故答案为:15.
点评 本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2.5 | C. | 2$\sqrt{3}$-1 | D. | 2$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2]∪[$\frac{5}{2}$,+∞) | B. | [$\sqrt{2}$,$\frac{5}{2}$] | C. | (0,$\sqrt{2}$]∪[$\frac{5}{2}$,+∞) | D. | (0,$\sqrt{2}$)∪($\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向左平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{12}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | b<a<c | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com