精英家教网 > 高中数学 > 题目详情
7.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,$∠BC{C_1}=\frac{π}{3}$.

(1)求证:C1B⊥平面ABC;
(2)求点B1到平面ACC1A1的距离.

分析 (1)由已知得AB⊥BC1,C1B⊥BC,由此能证明C1B⊥平面ABC.
(2)点B1转化为点B,利用等体积,即可求点B1到平面ACC1A1的距离.

解答 解:(1)因为侧面AB⊥BB1C1C,BC1?侧面BB1C1C,
故AB⊥BC1,…(2分)
在△BCC1中,$BC=1,C{C_1}=B{B_1}=2,∠BC{C_1}=\frac{π}{3}$
由余弦定理得:$B{{C}_{1}}^{2}$=${1}^{2}+{2}^{2}-2×1×2×cos\frac{π}{3}$=3
所以$B{C_1}=\sqrt{3}$故$B{C^2}+B{C_1}^2=C{C_1}^2$,所以BC⊥BC1,…(4分)
而BC∩AB=B,所以BC1⊥平面ABC…(6分)
(2)点B1转化为点B,${V_{{C_1}-ABC}}=\frac{{\sqrt{3}}}{6}$,…(8分)${S_{△AC{C_1}}}=\frac{{\sqrt{7}}}{2}$…(10分)
又${V_{{C_1}-ABC}}={V_{{B_1}-AC{C_1}}}$
所以点B1到平面ACC1A1的距离为$\frac{{\sqrt{21}}}{7}$…(12分)

点评 本题考查线面垂直、线线垂直,考查点B1到平面ACC1A1的距离的计算,考查学生分析解决问题的能力,正确运用线面垂直的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.计算:∫$\frac{1}{xlnx}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在下列几何体中是棱柱的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点.
(1)求点D到平面PEF的距离;
(2)求直线AC到平面PEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x=3是函数f(x)=alnx+x2-10x的一个极值点,则实数a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,∠BAD=120°,E,F分别为BC,PC的中点.
(1)证明:AE⊥PD
(2)若PA=AB=4,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥S-ABC中,底面是边长为2的正三角形且SA=SB=2,SC=$\sqrt{3}$,则二面角S-AB-C的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)在棱PC上是否存在一点M,使二面角M-BQ-C为30°,若存在,确定M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{2}-4x+5,x≥1}\end{array}\right.$
(1)求f(0)+f(1)的值;
(2)求使得f(x)<5成立的x的取值范围.

查看答案和解析>>

同步练习册答案