精英家教网 > 高中数学 > 题目详情
1.某几何的三视图如图所示,该几何体各个面中,面积最大的是(  )
A.$2\sqrt{34}$B.$8\sqrt{2}$C.10D.$6\sqrt{2}$

分析 根据三视图判断出几何体是三棱锥,是长方体的一个角,画出图形,求出各个面的面积即可.

解答 解:由三视图得,该几何体是三棱锥,即长方体的一个角,它的长、宽、高分别为4,3,4,
如图所示;
则该三棱锥的四个面的面积分别为
S△ABC=$\frac{1}{2}$×4×3=6,
S△PAB=$\frac{1}{2}$×4×4=8,
S△PBC=$\frac{1}{2}$×3×4$\sqrt{2}$=6$\sqrt{2}$,
S△PAC=$\frac{1}{2}$×4×5=10;
所以,面积最大的是△PBC,为10.
故选:C.

点评 本题考查了由三视图求几何体的体积的应用问题,解题的关键是对几何体正确还原,并根据三视图的长度求出几何体中的长度,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示(其中主视图和左视图相同),则该几何体的体积为(  )
A.$\frac{17}{2}$B.$\frac{20}{3}$C.$\frac{16}{3}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知loga2+loga3=2,则实数a=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点为F,若双曲线上存在点A使△AOF为正三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{3}+1$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2,g(x)=ax+3(a∈R),记函数F(x)=f(x)-g(x).
(1)判断方程F(x)=0的实根的个数;
(2)设F(x)在区间[1,2]的最小值为g(a),求g(a)的表达式;
(3)若函数|F(x)|在[0,1]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在正方体ABCD-A1B1C1D1中,P为A1C1上一动点,则当点P在线段A1C1上运动时,在①四棱锥P-ABCD的体积②异面直线AP与BD所成的角;③四棱锥P-ABCD外接球的半径;④四棱锥P-ABCD的表面积;其中保持恒定不变的有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=$\sqrt{5}$,AA1=a,M为线段BB1上的一动点,则当AM+MC1最小值为3$\sqrt{2}$,△AMC1的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=loga(1+x)-loga(1-x)的图象经过点(-$\frac{1}{2}$,-1).
(1)求实数a;
(2)判断函数f(x)的奇偶数,并写出f($\frac{1}{2}$)的值.

查看答案和解析>>

同步练习册答案