精英家教网 > 高中数学 > 题目详情
9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点为F,若双曲线上存在点A使△AOF为正三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{3}+1$D.$\sqrt{2}$+1

分析 由于OF为半焦距c,利用等边三角形性质,即可得点A的一个坐标,代入双曲线标准方程即可得双曲线的离心率.

解答 解:∵双曲线上存在点A使△AOF为正三角形,
设F为右焦点,OF=c,A在第一象限,
∴点A的坐标为($\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c)
代入双曲线方程得:$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4{b}^{2}}$=1,
即为$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4({c}^{2}-{a}^{2})}$=1,
即$\frac{1}{4}$e2-$\frac{3{e}^{2}}{4{e}^{2}-4}$=1,
解得e=1+$\sqrt{3}$.
故选:C.

点评 本题主要考查了双曲线的标准方程、双曲线的几何性质,双曲线的离心率的定义及其求法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知在平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为$F(-\sqrt{3},0)$,右顶点为D(2,0),P,Q分别是椭圆的左顶点和下顶点,过原点的直线交椭圆于A,B,且A点在第一象限,自A点作x轴的垂线,交x轴于C点,连BC.
(1)求该椭圆的标准方程;
(2)若AB平分线段PQ,求直线AB的斜率kAB;并在此情况下,求A到直线BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sin2x+sin2x的最大值为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,B=45°,C=60°,c=1,则b=(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的体积为(  )
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域;
(1)f(x)=x-$\sqrt{1-2x}$;     
(2)f(x)=$\frac{1}{{\sqrt{x-{x^2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何的三视图如图所示,该几何体各个面中,面积最大的是(  )
A.$2\sqrt{34}$B.$8\sqrt{2}$C.10D.$6\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某几何体的三视图都是边长为6的正方形,如图所示,则该几何体的体积是(  )
A.180B.144C.92D.180或144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知⊙O1与⊙O2的半径分别为R、r,且它们是方程x2-9x+14=0的两根,若⊙O1与⊙O2相切,则圆心距O1O2等于(  )
A.5B.9C.5或9D.10或18

查看答案和解析>>

同步练习册答案