精英家教网 > 高中数学 > 题目详情
20.已知O为坐标原点,M(x,y)为不等式组$\left\{\begin{array}{l}{1≤x≤2}\\{y≤2}\\{x≤2y}\\{\;}\end{array}\right.$表示的平面区域内的动点,点A的坐标为(2,1),则z=$\overrightarrow{OA}$•$\overrightarrow{AM}$的最大值为(  )
A.-5B.-1C.1D.0

分析 由约束条件作出可行域,利用向量的坐标运算得到线性目标函数,化目标函数为直线方程的斜截式,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{1≤x≤2}\\{y≤2}\\{x≤2y}\\{\;}\end{array}\right.$作出可行域如图,

z=$\overrightarrow{OA}$•$\overrightarrow{AM}$=(2,1)•(x-2,y-1)=2x-4+y-1=2x+y-5,
化为直线方程的斜截式:y=-2x+z+5,
由图可知,当直线y=-2x+z+5过A(2,2)时,
直线在y轴上的截距最大,z有最大值为1.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.复数$\frac{1}{1+2i}$的虚部为(  )
A.$\frac{1}{5}$iB.$\frac{1}{5}$C.-$\frac{2}{5}$D.-$\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=Asin(ωx+φ)\;(A>0\;,\;ω>0\;,\;|φ|<\frac{π}{2})$的部分图象如图所示,则将y=f(x)的图象向右平移$\frac{π}{6}$个单位后,得到的函数图象的解析式为(  )
A.y=sin2xB.$y=sin(2x+\frac{2π}{3})$C.$y=sin(2x-\frac{π}{6})$D.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(a+x)(1+x)4的展开式中,x的奇数次幂的系数和为32,则展开式中x3的系数为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=sinx+\sqrt{3}cosx$,求f(x)的最小正周期及最大值,并指出f(x)取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{a+b-c}$=c且acosB=bcosA,试判断△ABC的形状.(等边三角形)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.画出计算1+2+$\frac{1}{2}$+3+$\frac{1}{3}$+…+2008+$\frac{1}{2008}$的算法框图,并编写出与框图对应的算法语句.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的小方格是边长为1的正方形,在复平面内,若复数z1,z2对应的向量分别是$\overrightarrow{{O}{A}}$,$\overrightarrow{{O}{B}}$,则$\overrightarrow{AB}$所对应的复数为(  )
A.-3iB.2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=n2+n,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{(\frac{1}{{a}_{n}})^{2}-1}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案