精英家教网 > 高中数学 > 题目详情
10.已知数列{an}为公差不为零的等差数列,S6=60,且a1,a6,a21成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足bn+1-bn=an(n∈N+),且b1=3,求数列{bn}的通项公式.

分析 (Ⅰ)设等差数列{an}的公差为d,由已知列关于首项和公差的方程组,求解方程组可得首项和公差,代入等差数列的通项公式得答案;
(Ⅱ)把数列{an}的通项公式代入bn+1-bn=an,然后利用累加法求数列{bn}的通项公式.

解答 (Ⅰ)设等差数列{an}的公差为d,
则$\left\{\begin{array}{l}6{a_1}+15d=60\\{a_1}({{a_1}+20d})={({{a_1}+5d})^2}\end{array}\right.$,解得$\left\{\begin{array}{l}d=2\\{a_1}=5\end{array}\right.$.
∴an=2n+3;
(Ⅱ)由bn+1-bn=an
得当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=an-1+an-2+…a1+b1=(n-1)(n-1+4)+3=n(n+2).
当n=1时,b1=3适合上式,
∴数列{bn}的通项公式bn=n(n+2).

点评 本题考查数列递推式,考查了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$为增函数,则实数a的取值范围是(  )
A.-1≤a<3B.a<3C.a>3或a≤-1D.-1<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,则该四棱锥的外接球的半径为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)讨论函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其东北方向与它相距32海里的B处有一外国船只,且D岛位于海监船正东28$\sqrt{2}$海里处.
(1)求此时该外国船只与D岛的距离;
(2)观测中发现,此外国船只正以每小时8海里的速度沿正南方向航行,为了将该船拦截在离D岛24海里处,不让其进入D岛24海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:sin36°52'≈0.6,sin53°08'≈0.8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数g(x)=xe(2-a)x(a∈R),e为自然对数的底数.
(1)讨论g(x)的单调性;
(2)若函数f(x)=lng(x)-ax2的图象与直线y=m(m∈R)交于A,B两点,线段AB中点的横坐标为x0,证明:f'(x0)<0.(f'(x)为函数f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}的前n项和为Sn,且3a3=a6+4若S5<10,则a2的取值范围是(  )
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m$≤{∫}_{1}^{2}(4-3{x}^{2})dx$”是“函数f(x)=2${\;}^{x}+\frac{1}{{2}^{x+m}}$的值不小于4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论错误的是(  )
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
B.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件.
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题.
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”.

查看答案和解析>>

同步练习册答案