精英家教网 > 高中数学 > 题目详情
在平面xOy中,不等式x2+y2≤4确定的平面区域为U,不等式组
x-y≥0
x+y≥0
确定的平面区域为V.
(Ⅰ)在区域U中任取一个点,若所取的点落在区域V中,称试验成功,求实验成功的概率;
(Ⅱ)定义横、纵坐标为整数的点为“整点”,在区域U中任取1个“整点”,求这些“整点”恰好落在区域V中的概率.
考点:几何概型,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)根据几何概型的概率公式求出相应的面积,即可得到结论,
(Ⅱ)根据古典概型的概率公式分别求出对应区域内的“整点”个数,即可得到结论.
解答: 解:(1)作出不等式组对应的平面区域如图:
则平面区域为V对应的面积为
1
4
×π×22

则实验成功的概率为
π
π×22
=
1
4

(2)区域U内的“整点”共有13个,平面区域为V内的“整点”个数为3个,
则由古典概型的概率公式可知在区域U中任取1个“整点”,求这些“整点”恰好落在区域V中的概率为
5
13
点评:本题主要考查概率的计算,利用几何概型和古典概型的概率公式是解决本题的关键,利用数形结合是解决本题的突破.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y=x2-2mx+m+2的顶点在第三象限,试确定m的取值范围是(  )
A、m<-1或m>2
B、m<0或m>-1
C、-1<m<0
D、m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,四个顶点所围成菱形的面积为8
2

(Ⅰ)求椭圆的方程;
(Ⅱ)若A、B两点在椭圆C上,坐标原点为O,且满足kOA•kOB=-
1
2

(i)求
.
OA
.
OB
的取值范围;
(ii)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

2011年春,为保证全市居民用水,某市新建一个水库,已知该市在雨季的10天中,时间x(单位:天,1≤x≤10,x∈N*)和水库水位y(单位:米)的函数关系大致为y=-x2+12x+b,且在这10天中,水库的最低水位为3米.
(1)求b的值.
(2)若这10天水库没有决堤,则水库最低高多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,满足
a+c
b
=
sinA-sinB
sinA-sinC

(1)求角C;
(2)求sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-1,2]时,函数f(x)=-x2-ax+b的图象恒在x轴的上方,则
b
a
的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是关于x的二次函数,且f(-
3
2
+x)=f(-
3
2
-x),f(-
3
2
)=49,其函数图象与x轴两交点间的距离等于7,求二次函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有相同的焦点F,P是两曲线的公共点,若|PF|=
5
6
p
,则此椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD中,点E为CD的中点,
AM
=m
AB
AN
=n
AD
(m•n≠0),若
MN
BE
,则
n
m
=
 

查看答案和解析>>

同步练习册答案