5£®ÉèA1£¬A2£¬A3£¬¡­£¬AnÊǼ¯ºÏ{1£¬2£¬3£¬¡­£¬n}µÄn¸ö·Ç¿Õ×Ó¼¯£¨n¡Ý2£©£¬¶¨Òåaij=$\left\{\begin{array}{l}{0{£¬A}_{i}¡É{A}_{j}=∅}\\{1£¬{A}_{i}¡É{A}_{j}¡Ù∅}\end{array}\right.$£¬ÆäÖÐi£¬j=1£¬2£¬¡­£¬n£¬ÕâÑùµÃµ½µÄn2¸öÊýÖ®ºÍ¼ÇΪS£¨A1£¬A2£¬A3£¬¡­£¬An£©£¬¼ò¼ÇΪS£¬ÏÂÁÐÈýÖÖ˵·¨£º¢ÙSÓënµÄÆæÅ¼ÐÔÏàͬ£»¢ÚSÊÇnµÄ±¶Êý£»¢ÛSµÄ×îСֵΪn£¬×î´óֵΪn2£®ÆäÖÐÕýÈ·µÄÅжÏÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ú¢ÛD£®¢Û

·ÖÎö Óɼ¯ºÏµÄ×Ó¼¯µÄ¸ÅÄîºÍ¹æ¶¨µÚiÐÐÓëµÚjÁеÄÊýΪaij=$\left\{\begin{array}{l}{0{£¬A}_{i}¡É{A}_{j}=∅}\\{1£¬{A}_{i}¡É{A}_{j}¡Ù∅}\end{array}\right.$£¬ÆäÖÐi£¬j=1£¬2£¬¡­£¬n£¬¶ÔÑ¡ÏîÒ»Ò»Åжϼ´¿É£®

½â´ð ½â£º°Ñaij°´Æä½Å×¢ÅųÉÒ»¸öÊýÕóµÄ»°£¬ÈçÏ£¬¶Ô½ÇÏßÉÏÈ«ÊÇ1£¬¶Ô½ÇÏßÍ⣬1³É¶Ô³öÏÖ£¬ÈçÏ£º

£¨1£©a11=a22=¡­=ann=1£»
£¨2£©µ±i¡Ùjʱ£¬Èôaij=1£¬Ôòaij=1£»
Èôaij=0£¬Ôòaij=0£»
¼´¶Ô½ÇÏßÉÏÈ«ÊÇ1£¬¶Ô½ÇÏßÍ⣬1³É¶Ô³öÏÖ£¬
ËùÒÔ£¬S=n+2k£¬kÊÇijһ¸ö·Ç¸ºÕûÊý£¬
¼´£ºSÓënµÄÆæÅ¼ÐÔÒ»Ö£¬ÇÒS×îСֵÊÇn£¬
ÓÖÒòΪ£¬µ±A1=A2=¡­=Anʱ£¬S=n2£®
¹Ê¢Ù¢ÛÊÇÕýÈ·µÄ£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²é¼¯ºÏµÄ×Ó¼¯µÄ¸ÅÄ¿¼²é¼òµ¥µÄºÏÇéÍÆÀí£¬ÒÔ¼°¶Ô¹æ¶¨µÄÀí½âºÍÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ËÄÀâÖùABCD-A1B1C1D1µÄÈýÊÓͼÈçͼËùʾ£¬ÔòÒìÃæÖ±ÏßD1CÓëAC1Ëù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A£®30¡ãB£®45¡ãC£®60¡ãD£®90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²µÄ½¹µã·Ö±ðΪF1£¨-2$\sqrt{2}$£¬0£©¡¢F2£¨2$\sqrt{2}$£¬0£©£¬³¤Ö᳤Ϊ6£¬ÉèÖ±Ïßx-y+2=0½»ÍÖÔ²ÓÚA¡¢BÁ½µã
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÇóÏß¶ÎABµÄÖеã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax2+2£¨a-1£©x-2lnx£®
£¨1£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©µ±a£¾0ʱ£¬Èôf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵΪ1£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¶ÔÊýº¯Êýy=logaxµÄͼÏó¹ýµã£¨9£¬2£©£¬Ôòa=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDΪµÈÑüÌÝÐΣ¬AB¡ÎCD£¬¡ÏDAB=60¡ã£¬FC¡ÍÆ½ÃæABCD£¬AE¡ÍBD£¬CB=CD=CF£®
£¨1£©ÇóÖ¤£ºBD¡ÍÆ½ÃæAED£»
£¨2£©Èô¡÷EADÖУ¬AE=ED£¬¡ÏEAD=45¡ã£¬Çó¶þÃæ½ÇF-BD-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬ÔòµãC1µ½Æ½ÃæA1BDµÄ¾àÀëÊÇ$\frac{{2\sqrt{3}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªA=$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}$£¬B=$\frac{p+q+s}{3}$£¨ p£¬q£¬s¡Ê£¨0£¬+¡Þ£©£©
£¨¢ñ£©·Ö±ð¾Í$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}$ºÍ$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}$ÅжÏAÓëBµÄ´óС¹ØÏµ£¬²¢Óɴ˲ÂÏ룺¶ÔÓÚÈÎÒâµÄÕýÊýp£¬q£¬s£¬AÓëBµÄ´óС¹ØÏµ¼°µÈºÅ³ÉÁ¢µÄÌõ¼þ£»
£¨¢ò£©ÇëÖ¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®x£¬y¡ÊR£¬Èô|x|+|y|+|x-1|+|y-1|¡Ü2£¬Ôòx+yµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[-2£¬0]B£®[0£¬2]C£®[-2£¬2]D£®£¨0£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸