精英家教网 > 高中数学 > 题目详情
16.已知椭圆的焦点分别为F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),长轴长为6,设直线x-y+2=0交椭圆于A、B两点
(1)求椭圆的方程;
(2)求线段AB的中点坐标.

分析 (1)椭圆的焦点F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),焦点在x轴上,设椭圆C的方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),c=2$\sqrt{2}$,a=3,b2=a2-c2=9-8=1,即可求得椭圆的方程;
(2)由(1)可知,将直线方程代入椭圆方程,由韦达定理可知x1+x2=-$\frac{18}{5}$,根据中点坐标公式求得x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{9}{5}$,则y0=x0+2=$\frac{1}{5}$,即可求得线段AB的中点坐标.

解答 解:(1)由题意可知:椭圆的焦点F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),焦点在x轴上,
设椭圆C的方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),c=2$\sqrt{2}$,a=3,
b2=a2-c2=9-8=1,
∴椭圆C的方程为:$\frac{{x}^{2}}{9}+{y}^{2}=1$;
(2)由(1)可知:$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$,消y整理得:10x2+36x+27=0,
由△=362-4×10×27=216>0,
∴直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),中点E(x0,y0),
则x1+x2=-$\frac{18}{5}$,
由中点坐标公式可知:x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{9}{5}$,y0=x0+2=$\frac{1}{5}$,
故线段AB的中点坐标为(-$\frac{9}{5}$,$\frac{1}{5}$).

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理及中点坐标公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0).设圆T与椭圆C交于点M与点N.
(1)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(2)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:丨OR丨•丨OS丨为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+y2=5.
(1)求直线y=x+2被圆C截得的弦长;
(2)求过点$N(\begin{array}{l}{1,}3\end{array})$的圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,AB=2PA,E是线段BC的中点.
(Ⅰ)求异面直线PE和CD所成的角的余弦值;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值;
(Ⅲ)在线段PD上是否存在一点F,使得CF∥平面PAE,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦点,且过点(4,0)的椭圆的标准方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{lnx}{x}$
(1)求函数f(x)的单调区间;
(2)设g(x)=xf(x),若g(x)-x+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则该三棱锥外接球的体积为(  )
A.$\frac{24π}{3}$B.$\frac{4π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设A1,A2,A3,…,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij=$\left\{\begin{array}{l}{0{,A}_{i}∩{A}_{j}=∅}\\{1,{A}_{i}∩{A}_{j}≠∅}\end{array}\right.$,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1,A2,A3,…,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2.其中正确的判断是(  )
A.①②B.①③C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期及对称中心;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案