分析 (1)f(x)定义域为(0,+∞),f′(x)=$\frac{1-lnx}{{x}^{2}}$.由此利用导数性质能求出f(x)的单调区间.
(2)g(x)=xf(x)=lnx,令h(x)=g(x)-x+m=lnx-x+m,则${h}^{'}(x)=\frac{1}{x}-1$,g(x)-x+m≤0恒成立,知[h(x)]max≤0,由此能求出实数m的取值范围.
解答 解:(1)∵函数f(x)=$\frac{lnx}{x}$,
∴f(x)定义域为(0,+∞),f′(x)=$\frac{1-lnx}{{x}^{2}}$.
令f'(x)=$\frac{1-lnx}{{x}^{2}}$=0,则x=e.
列表如下:
| x | (0,e) | e | (e,+∞) |
| f'(x) | + | 0 | - |
| f(x) | ↗ | $\frac{1}{e}$ | ↘ |
点评 本题考查函数的单调区间的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com