14£®ÒÑÖªA=$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}$£¬B=$\frac{p+q+s}{3}$£¨ p£¬q£¬s¡Ê£¨0£¬+¡Þ£©£©
£¨¢ñ£©·Ö±ð¾Í$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}$ºÍ$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}$ÅжÏAÓëBµÄ´óС¹ØÏµ£¬²¢Óɴ˲ÂÏ룺¶ÔÓÚÈÎÒâµÄÕýÊýp£¬q£¬s£¬AÓëBµÄ´óС¹ØÏµ¼°µÈºÅ³ÉÁ¢µÄÌõ¼þ£»
£¨¢ò£©ÇëÖ¤Ã÷ÄãµÄ²ÂÏ룮

·ÖÎö £¨1£©¼ÆËã$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}\right.$ºÍ$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}\right.$ʱ£¬¶ÔÓ¦AµÄÖµ£¬Óɴ˲ÂÏ룺A¡ÜB£¬µ±ÇÒ½öµ±p=q=sʱȡµÃµÈºÅ£»
£¨2£©Ó÷ÖÎö·¨Ö¤Ã÷½áÂÛ³ÉÁ¢¼´¿É£®

½â´ð ½â£º£¨1£©µ±$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}\right.$ʱ£¬A=B=1£¬¡­£¨1·Ö£©
µ±$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}\right.$ʱ£¬$A=\frac{6}{5}£¼B=\frac{4}{3}$£»¡­£¨3·Ö£©
¶ÔÓÚÈÎÒâµÄp£¬q£¬s¡Ê£¨0£¬+¡Þ£©£¬
²ÂÏ룺A¡ÜB£¬µ±ÇÒ½öµ±p=q=sʱȡµÃµÈºÅ£»¡­£¨6·Ö£©
£¨2£©Ö¤Ã÷ÈçÏ£º¶ÔÓÚp£¬q£¬s¡Ê£¨0£¬+¡Þ£©£¬
ÒªÖ¤$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}¡Ü\frac{p+q+s}{3}$³ÉÁ¢£¬¡­£¨7·Ö£©
Ö»ÐèÖ¤£º$9¡Ü£¨p+q+s£©£¨\frac{1}{p}+\frac{1}{q}+\frac{1}{s}£©$£¬
Ö»ÐèÖ¤£º$9¡Ü3+\frac{p}{q}+\frac{p}{s}+\frac{q}{p}+\frac{q}{s}+\frac{s}{p}+\frac{s}{q}$£¬
¼´Ö¤£º$6¡Ü£¨\frac{p}{q}+\frac{q}{p}£©+£¨\frac{p}{s}+\frac{s}{p}£©+£¨\frac{q}{s}+\frac{s}{q}£©$£¨*£©£»¡­£¨10·Ö£©
¡ß¶ÔÓÚp£¬q£¬s¡Ê£¨0£¬+¡Þ£©£¬ÓÐ$\frac{p}{q}+\frac{q}{p}¡Ý2$£¬
ͬÀí£º$\frac{p}{s}+\frac{s}{p}¡Ý2£¬\frac{q}{s}+\frac{s}{q}¡Ý2$£»
¡à²»µÈʽ£¨*£©ÏÔÈ»³ÉÁ¢£»¡­£¨11·Ö£©
Ҫʹ£¨*£©µÄµÈºÅ³ÉÁ¢£¬±ØÐëp=q=sʱµÈºÅ³ÉÁ¢£»
 ËùÒÔÔ­²»µÈʽ³ÉÁ¢£®¡­£¨12·Ö£©
£¨ÆäËûÖ¤Ã÷·½·¨×ÃÇ鏸·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÆÀíÓëÖ¤Ã÷µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˹éÄɲÂÏëµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDΪÁâÐΣ¬¡ÏABC=60¡ã£¬AB=2PA£¬EÊÇÏß¶ÎBCµÄÖе㣮
£¨¢ñ£©ÇóÒìÃæÖ±ÏßPEºÍCDËù³ÉµÄ½ÇµÄÓàÏÒÖµ£»
£¨¢ò£©ÇóÆ½ÃæPAEÓëÆ½ÃæPCDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÔÚÏß¶ÎPDÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃCF¡ÎÆ½ÃæPAE£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèA1£¬A2£¬A3£¬¡­£¬AnÊǼ¯ºÏ{1£¬2£¬3£¬¡­£¬n}µÄn¸ö·Ç¿Õ×Ó¼¯£¨n¡Ý2£©£¬¶¨Òåaij=$\left\{\begin{array}{l}{0{£¬A}_{i}¡É{A}_{j}=∅}\\{1£¬{A}_{i}¡É{A}_{j}¡Ù∅}\end{array}\right.$£¬ÆäÖÐi£¬j=1£¬2£¬¡­£¬n£¬ÕâÑùµÃµ½µÄn2¸öÊýÖ®ºÍ¼ÇΪS£¨A1£¬A2£¬A3£¬¡­£¬An£©£¬¼ò¼ÇΪS£¬ÏÂÁÐÈýÖÖ˵·¨£º¢ÙSÓënµÄÆæÅ¼ÐÔÏàͬ£»¢ÚSÊÇnµÄ±¶Êý£»¢ÛSµÄ×îСֵΪn£¬×î´óֵΪn2£®ÆäÖÐÕýÈ·µÄÅжÏÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ú¢ÛD£®¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôº¯Êýy=ax+cosxÊÇÔöº¯Êý£¬ÔòʵÊýaµÄ·¶Î§ÊÇ[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑ֪ij¹«Ë¾Éú²úÒ»ÖÖÒÇÆ÷Ôª¼þ£¬Äê¹Ì¶¨³É±¾Îª20ÍòÔª£¬Ã¿Éú²ú1Íò¼þÒÇÆ÷Ôª¼þÐèÁíÍâͶÈë8.1ÍòÔª£¬Éè¸Ã¹«Ë¾Ò»ÄêÄÚ¹²Éú²ú´ËÖÖÒÇÆ÷Ôª¼þxÍò¼þ²¢È«²¿ÏúÊÛÍ꣬ÿÍò¼þµÄÏúÊÛÊÕÈëΪf£¨x£©ÍòÔª£¬ÇÒ
f£¨x£©=$\left\{\begin{array}{l}32.4-\frac{1}{10}{x^2}£¨0£¼x¡Ü10£©\\ \frac{324}{x}-\frac{1000}{x^2}£¨x£¾10£©\end{array}$
£¨¢ñ£©Ð´³öÄêÀûÈóy£¨ÍòÔª£©¹ØÓÚÄê²úÆ·x£¨Íò¼þ£©µÄº¯Êý½âÎöʽ£»
£¨¢ò£©µ±Äê²úÁ¿Îª¶àÉÙÍò¼þʱ£¬¸Ã¹«Ë¾Éú²ú´ËÖÖÒÇÆ÷Ôª¼þËù»ñÄêÀûÈó×î´ó£¿
£¨×¢£ºÄêÀûÈó=ÄêÏúÊÛÊÕÈë-Äê×ܳɱ¾£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éè͹k£¨k¡Ý3ÇÒk¡ÊN£©±ßÐεĶԽÇÏßµÄÌõÊýΪf£¨k£©£¬Ôò͹k+1±ßÐεĶԽÇÏßµÄÌõÊýΪf£¨k+1£©=f£¨k£©+£¨¡¡¡¡£©
A£®k-1B£®kC£®k+1D£®k2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=cos4x-2sinxcosx-sin4x£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¼°¶Ô³ÆÖÐÐÄ£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬Çóf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=2cos2x+2$\sqrt{3}$sinxcosx£¨x¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©ÔÚ0£¼x¡Ü$\frac{¦Ð}{3}$µÄÌõ¼þÏ£¬Çóf£¨x£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèFΪÍÖÔ²$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1µÄ×󽹵㣬A£¬B£¬CΪÍÖÔ²ÉϵÄÈýµã£¬Èô$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$£¬Ôò|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+|$\overrightarrow{FC}$|=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸