精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(ωx+
π
6
)(x∈R,ω>0)的最小正周期为4π,为了得到函数g(x)=cosωx的图象,应将f(x)的图象(  )
A、向左平移
π
3
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
3
个单位长度
D、向右平移
3
个单位长度
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据函数的周期性求得ω,可得 f(x)=sin(
1
2
x+
π
6
)=sin
1
2
(x+
π
3
).再结合函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答: 解:函数f(x)=sin(ωx+
π
6
)(x∈R,ω>0)的最小正周期为4π,
ω
=4π,∴ω=
1
2
,∴f(x)=sin(
1
2
x+
π
6
)=sin
1
2
(x+
π
3
).
为了得到函数g(x)=cosωx=cos
1
2
x=sin(
1
2
x+
π
2
)=sin
1
2
(x+π)的图象,
应将f(x)的图象向左平移
3
个单位长度,
故选:C.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的周期性,诱导公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z(1+i)2=2i,则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,弦AB经过F2点,若A点在x轴的下方,且|AF2|=2|F2B|,
AF1
BF1
=
16
9
a2,则∠F1AB=(  )
A、
12
B、
π
2
C、
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(1,0),
b
=(0,1),且
c
a
=
c
b
=1,则|
c
+t
a
+
1
t
b
|(t>0)的最小值是(  )
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=2cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在区间[-2015,2015]上的函数f(x)满足:对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为(  )
A、2014B、2015
C、4028D、4030

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(cosx-sinx,2sinx),
b
=(cosx+sinx,cosx),f(x)=
a
b
,将函数f(x)的图象平移而得到函数g(x)=
2
cos2x-1,则平移方法可以是(  )
A、左移
π
8
个单位,下移1个单位
B、左移
π
4
个单位,下移1个单位
C、右移
π
4
个单位,上移1个单位
D、左移
π
8
个单位,上移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线x+y+m=0(m≠0)与曲线E:
x2
a
+
y2
b
=1(a>0)相交于A,B两点,O是坐标原点,且
OP
=
1
2
OA
+
OB
),若直线OP的斜率为-
1
2
,则曲线E的离心率是(  )
A、
2
2
B、
3
2
C、
3
D、
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
4
+y2=1的上、下顶点分别为A、B,点P在椭圆上,且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N,
(ⅰ)设直线AP、BP的斜率分别为k1、k2,求证:k1•k2为定值;
(ⅱ)当点P运动时,以MN为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

同步练习册答案