精英家教网 > 高中数学 > 题目详情
若定义在区间[-2015,2015]上的函数f(x)满足:对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为(  )
A、2014B、2015
C、4028D、4030
考点:函数单调性的性质
专题:函数的性质及应用
分析:根据抽象函数的表达式,利用函数单调性的性质即可得到结论.
解答: 解:∵对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,
∴令x1=x2=0,得f(0)=2014,
再令x1+x2=0,将f(0)=2014代入可得f(x)+f(-x)=4028.
设x1<x2,x1,x2∈[-2015,2015],
则x2-x1>0,f(x2-x1)=f(x2)+f(-x1)-2014,
∴f(x2)+f(-x1)-2014>2014.
又∵f(-x1)=4028-f(x1),
∴可得f(x2)>f(x1),
即函数f(x)是递增的,
∴f(x)max=f(2015),f(x)min=f(-2015).
又∵f(2015)+f(-2015)=4028,
∴M+N的值为4028.
故选:C.
点评:本题主要考查函数值的计算,利用赋值法,证明函数的单调性是解决本题的关键,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程是:ρcosθ=a(a∈R),圆C的参数方程是
x=-1+cosθ
y=sinθ
(θ为参数),若圆C关于直线l对称,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,当输出y值为-6时,则输出x的值为(  )
A、64B、32C、16D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为A,若常数C满足:对任意正实数?,总存在x∈A,使得0<|f(x)-C|<?成立,则称C为函数y=f(x)的“渐近值”.现有下列三个函数:①f(x)=
x
x-1
;②f(x)=
1,x为有理数
0,x为无理数
;③f(x)=
sinx
x
.其中以数“1”为渐近值的函数个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)(x∈R,ω>0)的最小正周期为4π,为了得到函数g(x)=cosωx的图象,应将f(x)的图象(  )
A、向左平移
π
3
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
3
个单位长度
D、向右平移
3
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

斐波那契数列{Fn},1,1,2,3,5,8,13,21,34,55,89,144,283,…,现已知{Fn}的连续两项平方和仍是数列{Fn}中的项,则F39+F40=(  )
A、F39
B、F40
C、F41
D、F42

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x∈N|y=ln(2-x)},B={x|x(x-2)≤0},A∩B=(  )
A、{x|x≥1}
B、{x|0≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合R为实数集,集合M={x|0<x<2},N={x|x2-3x+2>0},则M∩∁RN=(  )
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|1<x<2}
D、{x|0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,随着地方经济的发展,劳务输出大省四川、河南、湖北、安徽等地的部分劳务人员选择了回乡就业,因而使得沿海地区出现了一定程度的用工荒.今年春节过后,沿海某公司对来自上述四省的务工人员进行了统计(如表):
省份 四川 河南 湖北 安徽
人数 45 60 30 15
为了更进一步了解员工的来源情况,该公司采用分层抽样的方法从上述四省务工人员中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名务工人员中随机抽取两名,求这两名来自同一省份的概率;
(2)在参加问卷调查的50名务工人员中,从来自四川、湖北两省的人员中随机抽取两名,用ξ表示抽得四川省务工人员的人数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案