精英家教网 > 高中数学 > 题目详情
5.在等比数列{an}中,若a5=8,a8=1,则a1=128.

分析 设等比数列{an}的公比是q,根据等比数列的通项公式和题意求出q,再利用a5=8求出a1

解答 解:设等比数列{an}的公比是q,
∵a5=8,a8=1,∴${q}^{3}=\frac{{a}_{8}}{{a}_{5}}$=$\frac{1}{8}$,则q=$\frac{1}{2}$,
∵a5=a1•q4=8,解得a1=128,
故答案为:128.

点评 本题考查等比数列的通项公式的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某良种培育基地正在培育一种小麦新品种A,种植了25亩,所得亩产数据(单位:千克)如下:
363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.
分组频数频率
[360,370)
[370,380)
[380,390)
[390,400)
[400,410)
[410,420)
[420,430]
合计
(1)求这二十五个数据的中位数;
(2)以组距为10进行分组,完成答题卡上的品种A亩产量的频率分布表;
(3)完成如图上的品种A亩产量的频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=3,c=1,sin2A=sinC,则$\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:函数y=x2-2x+a在区间(1,2)上有1个零点;命题q:函数y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q是假命题,p∨q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是(  )
A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-3y≥0}\\{x+y-4≤0}\end{array}\right.$.则x+3y的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知正数数列{an}满足:数列{a2n-1}是首项为1的等比数列,数列{a2n}是首项为2的等差数列.设数列{an}的前n项和为Sn(n∈N*),已知S3=a4,a2+a3+a5=a6
(1)求数列{an}的通项公式;
(2)求数列{an}的前2m项和S2m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,且$|\begin{array}{l}{\overrightarrow{a}}\\{\;}\end{array}|$=$|\begin{array}{l}{\overrightarrow{b}}\\{\;}\end{array}|$=$|\begin{array}{l}{\overrightarrow{c}}\\{\;}\end{array}|$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=${log_{\frac{1}{2}}}$x-x+4的零点位于区间(  )
A.$(\frac{1}{2},1)$B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步练习册答案