精英家教网 > 高中数学 > 题目详情
18.在△ABC中,设角A、B、C的对边分别为a、b、c,已知$\overrightarrow m=(a,\frac{c}{2})$,$\overrightarrow n=(cosC,1)$,且$\overrightarrow m•\overrightarrow n=b$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,求△ABC的面积S的最大值.

分析 (Ⅰ)由两向量的坐标,利用平面向量的数量积运算法则化简已知等式,整理后利用正弦定理化简,求出cosA的值,即可确定出角A的大小;
(Ⅱ)由a,cosA的值,利用余弦定理列出关系式,并利用基本不等式求出bc的最大值,确定出面积的最大值即可.

解答 解:(Ⅰ)∵$\overrightarrow{m}$=(a,$\frac{c}{2}$),$\overrightarrow{n}$(cosC,1),∴$\overrightarrow{m}$•$\overrightarrow{n}$=b,即2acosC+c=2b,
由正弦定理,得2sinAcosC+sinC=2sinB,
∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinC=2cosAsinC,
∵sinC≠0,
∴cosA=$\frac{1}{2}$,
又0<A<π,
∴A=$\frac{π}{3}$)
(Ⅱ)∵a=3,A=$\frac{π}{3}$,
由余弦定理,得b2+c2-2bc•cos$\frac{π}{3}$=9,即b2+c2-bc=9,
∵b2+c2≥2bc,
∴b2+c2-bc≥2bc-bc=bc.
∴bc≤9,当且仅当b=c时等号成立,
∴S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×9×$\frac{\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{4}$,
则△ABC的面积S的最大值为$\frac{{9\sqrt{3}}}{4}$.

点评 此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一个样本,若编号为42的产品在样本中,则该样本中产品的最小编号为(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=$\frac{2-2i}{1+i}$,则z的共轭复数的虚部等于(  )
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,定义域是R且为减函数的是(  )
A.y=exB.y=-xC.y=lgxD.y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,若角α的始边为x轴的非负半轴,终边为射线l:y=2$\sqrt{2}$x(x≥0).
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)若点P,Q分别是角α始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A=$\{x|-\frac{1}{2}<x<2\},B=\{x\left|{{x^2}≤1}\right.\}$,则A∪B=(  )
A.$\{x|-\frac{1}{2}<x≤1\}$B.{x|-1≤x<2}C.{x|x<2}D.{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设Sn为等差数列{an}的前n项和,若a2+a5=12,S3=9,则数列{an}的通项公式an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={x∈R|x2=1},N={x∈R|x2-2x-3=0},则M∪N=(  )
A.{-1}B.{-1,1,3}C.{1,3}D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,其正视图中的曲线部分为半圆,则该几何体的表面积为(  )
A.10+6$\sqrt{2}$+4π(cm2B.16+6$\sqrt{2}$+4π(cm2C.12+4π(cm2D.22+4π(cm2

查看答案和解析>>

同步练习册答案