精英家教网 > 高中数学 > 题目详情
8.在长方体ABCD-A1B1C1D1中,若棱BB1=BC=1,AB=$\sqrt{3}$,则AD1与BC所成角等于45°,CD1与AB所成角等于30°,CD1与A1D所成角的余弦值等于$\frac{\sqrt{2}}{4}$.

分析 由BC∥AD,知∠DAD1是异面直线AD1与BC所成角,由此能求出AD1与BC所成角;由AB∥CD,得∠DCD1是CD1与AB所成角,由此能求出CD1与AB所成角;由CD1∥A1B,知∠DA1B是CD1与A1D所成角,由此能求出CD1与A1D所成角的余弦值.

解答 解:∵BC∥AD,∴∠DAD1是异面直线AD1与BC所成角,
∵棱BB1=BC=1,AB=$\sqrt{3}$,
∴∠DAD1=45°,
∴AD1与BC所成角等于45°;
∵AB∥CD,∴∠DCD1是CD1与AB所成角,
∵BB1=BC=1,AB=$\sqrt{3}$,
∴cos∠DCD1=$\frac{DC}{{D}_{1}C}$=$\frac{\sqrt{3}}{2}$,∴∠DCD1=30°,
∴CD1与AB所成角等于30°;
∵CD1∥A1B,∴∠DA1B是CD1与A1D所成角,
∵A1D=$\sqrt{2}$,A1B=2,BD=2,
∴cos∠DA1B=$\frac{2+4-4}{2×\sqrt{2}×2}$=$\frac{\sqrt{2}}{4}$.
∴CD1与A1D所成角的余弦值为$\frac{\sqrt{2}}{4}$.
故答案为:45°,30°,$\frac{\sqrt{2}}{4}$.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养产.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知sin4$\frac{x}{4}$+cos4$\frac{x}{4}$=1,在sin(2016π+x)=(  )
A.$\frac{\sqrt{3}}{2}$B.0C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解某种树苗培育情况,研究所在苗圃基地花木园中随机抽出30株树苗的主体高,编成如图所示的茎叶图,若苗主体高在169cm以上(包括169cm)定义为“优质苗”,高在169cm以下(不包括169cm)定义为“普苗”
(1)如果用分层抽样的方法从“优质苗”和“普苗”中抽取5株,再从这5株中选2株,那么至少有1株是“优质苗”的概率是多少?
(2)根据统计学的基本思想,用样本估计总体,把频率作为概率,若从该花木园随机选3株出售,价格是:“优质苗”每株3,“普苗”每株1(单位:千元)用X表示销售3株的总收入,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C对应的边分别为a,b,c,若b-acosB=acosC-c,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.
(1)求数列{an}的通项公式;
(2)求数列{an}中的最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x2-x+2y)7的展开式中,x4y4的系数为1680.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为Sn,已知a1=2,Sn+1+(-1)nSn=2n,则S100=198.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设S为平面上以点A(4,1),B(-1,-6),c(-3,2)为顶点的三角形区域.(三角形内部及边界)试求当点(x,y)在区域S上变动时
(1)t=4x-3y的最大值和最小值.
(2)若把t=4x-3y变为t=400x-300y呢?
(3)又把t=4x-3y改为t=4x+y时结果如何?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知{an}是首项不为零的等差数列,若$\frac{{S}_{n}}{{S}_{2n}}$是与n无关的常数k,则k=$\frac{1}{2}$或$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案