精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.
(1)求数列{an}的通项公式;
(2)求数列{an}中的最大的项.

分析 (1)由已知结合f(log2an)=-2n得到数列递推式,整理后求解关于an的一元二次方程得答案;
(2)直接利用作商法证明数列是递减数列,数列{an}的首项为最大项.

解答 解:f(log2an)=${2}^{lo{g}_{2}{a}_{n}}$-${2}^{-lo{g}_{2}{a}_{n}}$=${a}_{n}-\frac{1}{{a}_{n}}$,
∴${a}_{n}-\frac{1}{{a}_{n}}$=-2n,
∴${a}_{n}^{2}+2n{a}_{n}-1=0$
解得an=-n±$\sqrt{{n}^{2}+1}$,
∵an>0,
an=$\sqrt{{n}^{2}+1}-n$,n∈N*
(2)$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{\sqrt{(n+1)^{2}}-(n+1)}{\sqrt{{n}^{2}+1}-n}$,
=$\frac{\sqrt{{n}^{2}+1}+n}{\sqrt{(n+1)^{2}+1}+(n+1)}$<1,
∴数列{an}中最大的项为首项,${a}_{1}=\sqrt{2}-1$.

点评 本题考查了数列的函数特性,考查了数列递推式,训练了利用作商法证明数列是递减数列,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6,将这个玩具向上抛掷一次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过2,事件C表示向上的一面出现的点数不小于4,则(  )
A.A与B是互斥而非对立事件B.A与B是对立事件
C.B与C是互斥而非对立事件D.B与C是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中真命题是(  )
A.若m⊥α,m?β,则α⊥β
B.若m?α,n?α,m∥β,n∥β,则α∥β
C.若m?α,n?α,m,n是异面直线,那么n与α相交
D.若α∩β=m,n∥m,则n∥α且n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{6}$)-cos2x.
(1)求f(x)的最小正周期及x∈[$\frac{π}{12}$,$\frac{2π}{3}$]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=$\sqrt{3}$,c=2,f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}}{4}$-$\frac{1}{2}$.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求函数y=3-4cos(2x+$\frac{π}{3}$),x∈[-$\frac{π}{3}$,$\frac{π}{6}$]的最大值和最小值及相应的x值.
(2)求函数y=cos2x+2sinx-2,x∈R的值域.
(3)若函数f(x)=-sin2x+acosx+2,x∈[0,$\frac{π}{2}$]的最小值为$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中,若棱BB1=BC=1,AB=$\sqrt{3}$,则AD1与BC所成角等于45°,CD1与AB所成角等于30°,CD1与A1D所成角的余弦值等于$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\frac{sinα}{sin\frac{α}{2}}$=$\frac{8}{5}$,则cosα的值是(  )
A.$\frac{3}{5}$B.$\frac{7}{50}$C.$\frac{7}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若A={x|x>-1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是-1<x<1.

查看答案和解析>>

同步练习册答案