精英家教网 > 高中数学 > 题目详情
9.已知f(x)=($\frac{1}{2}$)x-log2x在区间(1,$\frac{3}{2}$)内有一个零点x0,若用二分法求x0的近似数(精度为0.1),则需要将区间对分的次数为(  )
A.2B.3C.4D.5

分析 由求方程近似解的步骤可知,每次等分区间,都会是区间的长度变为原来的一半,令$\frac{1}{2}$( $\frac{1}{2}$)n≤0.1,求得自然数n最小值,即为所求.

解答 解:每次等分区间,都会是区间的长度变为原来的一半,而原区间的长度为$\frac{1}{2}$,
令$\frac{1}{2}$×($\frac{1}{2}$)n≤0.1,求得自然数n最小为3,
故选:B.

点评 本题主要考查用二分法求方程的近似解的方法和步骤,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.不等式|x-1|+2|x+1|<3的解集为(-$\frac{4}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e2-e1的取值范围是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,椭圆左、右顶点分别为A、B,且A到椭圆两焦点的距离之和为4.设P为椭圆上不同于A、B的任一点,作PQ⊥x轴,Q为垂足.M为线段PQ中点,直线AM交直线l:x=b于点C,D为线段BC中点(如图).
(1)求椭圆的方程;
(2)证明:△OMD是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合.椭圆C1与抛物线C2在第一象限内的交点为P,|PF|=$\frac{5}{3}$.
(1)求椭圆C1的方程;
(2)已知直线x-y+m=0与椭圆C1交于不同的两点A、B,且线段AB的中点不在圆x2+y2=$\frac{25}{49}$内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项不为0的等差数列{an}的前n项和为Sn,S6+8a7=0,等比数列{bn}的前n项和为Tn,且T2=a2+a3,b3=a3,n∈N*
(1)求$\frac{{S}_{7}}{{a}_{6}}$;
(2)若a2=7,b2>0,求数列{anbn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2x2-a-1)ex
(Ⅰ)若函数f(x)在[-2,2]上是单调增函数,求实数a的取值范围;
(Ⅱ)若f(x)有两个不同的极值点m,n,满足m+n≤mn+1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,若a4a6a8a10a12=32,则$\frac{{{a_{10}}^2}}{{{a_{12}}}}$的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:
x2=8(y-m)(m>0)
(1)求轨迹C的方程;
(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;
(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.

查看答案和解析>>

同步练习册答案