精英家教网 > 高中数学 > 题目详情
7.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为(  )
A.40mB.20mC.305mD.(20$\sqrt{6}$-40)m

分析 设出AB=x,由题意将BD、DC用x来表示,然后在△DBC中利用余弦定理建立方程求得x,即可得到电视塔的高度.

解答 解:由题题意,设AB=x,则BD=$\sqrt{3}$x,BC=x
在△DBC中,∠BCD=120°,CD=40,
∴根据余弦定理,得BD2=BC2+CD2-2BC•CD•cos∠DCB
即:($\sqrt{3}$x)2=(40)2+x2-2×40•x•cos120°
整理得x2-20x-800=0,解之得x=40或x=-20(舍去)
即所求电视塔的高度为40米.
故选:A.

点评 本题给出实际应用问题,求电视塔的高度.着重考查了解三角形的实际应用的知识,考查了运用数学知识、建立数学模型解决实际问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x>0,那么命题¬p为(  )
A.?x∈R,2x<0B.?x∈R,2x<0C.?x∈R,2x≤0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$0<α<\frac{π}{2},0<β<\frac{π}{2},cosα=\frac{3}{5},cos({β+α})=\frac{5}{13}$.
(I)求sinβ的值;
(II)求$\frac{sin2α}{{{{cos}^2}α+cos2α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.从一副扑克牌中取出1张A,2张K,2张Q放入一盒子中,然后从这5张牌中随机取出两张,则这两张牌大小不同的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若程序框图如图所示,则输出的结果为(  )
A.9B.16C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等差数列,下列结论中正确的是(  )
A.若a1+a2>0,则a2+a3>0B.若a1+a2<0,则a2+a3<0
C.若0<a1<a2,则a2>$\sqrt{{a}_{1}{a}_{3}}$D.若a1<0,则(a2-a1)(a2-a3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b=$\sqrt{10}$,a+c=ac,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若b=$\frac{{2\sqrt{6}}}{3}$,求角B;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=-\frac{1}{3}{x^3}+m{x^2}+x+1$在区间[1,2]上单调递增,则m的取值范围是m≥$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案