精英家教网 > 高中数学 > 题目详情
设某地区O型血的人数占总人口数的比为
1
2
,现从中随机抽取3人.
(1)求3人中恰有2人为O型血的概率;
(2)记O型血的人数为ξ,求ξ的概率分布与数学期望.
考点:离散型随机变量的期望与方差,n次独立重复试验中恰好发生k次的概率
专题:概率与统计
分析:(1)随机抽取一人,是O型血的概率为
1
2
,由此能求出3人中有2人为O型血的概率.
(2)ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的概率分布与数学期望.
解答: (本小题满分14分)
(理)解:(1)由题意,随机抽取一人,是O型血的概率为
1
2
,…(2分)
∴3人中有2人为O型血的概率为P=
C
2
3
(
1
2
)3=
3
8
.…(6分)
(2)ξ的可能取值为0,1,2,3,…(8分)
P(ξ=0)=
C
0
3
(
1
2
)3=
1
8

P(ξ=1)=
C
1
3
(
1
2
)3=
3
8

P(ξ=2)=
C
2
3
(
1
2
)3=
3
8

P(ξ=3)=
C
3
3
(
1
2
)3=
1
8
,…(12分)
∴ξ的分布鞋列为:
 ξ  0  1  2
 P  
1
8
 
3
8
 
3
8
 
1
8
∴Eξ=
3
8
+2×
3
8
+3×
1
8
=
3
2
.…(14分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命题p为真命题,则实数m的取值范围是(  )
A、(-∞,-2]
B、[2,+∞)
C、(-∞,-2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个正三棱柱锤A-BCD零件,P是侧面ACD上一点,在面ACD上过点P画一条与棱AB垂直的线段,怎样画法?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx(sinx+cosx).
(Ⅰ)求f(
π
8
)的值;
(Ⅱ)若函数f(x)在[0,a]上的值域为[0,
1+
2
2
],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(8cosα,2),
b
=(sinα-cosα,3),设函数f(α)=
a
b

(1)求函数f(α)的最大值;
(2)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系.直线l的极坐标方程为pcosθ-psinθ+2=0,曲线C1的参数方程为
x=4cosθ
y=sinθ
(θ为参数),点M(x0,y0)在曲线C1上,动点P(x,y)其坐标满足
x=
1
4
x0
y=y0

(Ⅰ)求动点P的轨迹方程;
(Ⅱ)记动点P(x,y)的轨迹为曲线C2,试判断直线l与曲线C2的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
2
1
为矩阵A=
1a
-14
属于特征值λ的一个特征向量.
(Ⅰ)求实数a,λ的值;       
(Ⅱ)求矩阵A的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某人想制造一个支架,它由四根金属杆PH,HA,HB,HC构成,其底端三点A,B,C均匀地固定在半径为3m的圆O上(圆O在地面上),P,H,O三点相异且共线,PO与地面垂直.现要求点P到地面的距离恰为3
3
m,记用料总长为L=PH+HA+HB+HC,设∠HAO=θ.
(1)试将L表示为θ的函数,并注明定义域;
(2)当θ的正弦值是多少时,用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+ax+b=0(a>0)的两根的平方和为4,两根之积为
2
3
,则a值是
 

查看答案和解析>>

同步练习册答案