精英家教网 > 高中数学 > 题目详情
7.复数z=$\frac{m-2i}{1-2i}$(m∈R)不可能在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,然后分别由实部和虚部大于0、小于0求解m的范围判断.

解答 解:z=$\frac{m-2i}{1-2i}$=$\frac{(m-2i)(1+2i)}{(1-2i)(1+2i)}=\frac{(m+4)+(2m-2)i}{5}$,
若$\left\{\begin{array}{l}{m+4>0}\\{2m-2>0}\end{array}\right.$,得m>1;
若$\left\{\begin{array}{l}{m+4>0}\\{2m-2<0}\end{array}\right.$,得-4<m<1;
若$\left\{\begin{array}{l}{m+4<0}\\{2m-2>0}\end{array}\right.$,得m∈∅;
若$\left\{\begin{array}{l}{m+4<0}\\{2m-2<0}\end{array}\right.$,得m<-4.
∴复数z=$\frac{m-2i}{1-2i}$(m∈R)不可能在第二象限.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.椭圆2x2+4y2=1的长轴长等于(  )
A.4B.2$\sqrt{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)写出函数f(x)的解析式及x0的值;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若cos(75°+α)=$\frac{1}{3}$,则cos(30°-2α)的值为(  )
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{4\sqrt{2}}{9}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.复数Z=(m2+3m-4)+(m2-10m+9)i(m∈R),
(1)当m=0时,求复数Z的模;
(2)当实数 m为何值时复数Z为纯虚数;
(3)当实数 m为何值时复数Z在复平面内对应的点在第二象限?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题p:sinθ-$\frac{1}{tanθ}$=tanθ-$\frac{1}{sinθ}$(0<θ<$\frac{π}{4}$)无实数解,命题q:ex+$\frac{1}{lnx}$=lnx+$\frac{1}{e^x}$无实数解. 给出下列命题:①“p或q”;②“(?p)或q”;③“p且(?q)”; ④“p且q”.其中假命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知m∈R,i为虚数单位,则“m=1”是“复数z=m2-1+(m+1)i为纯虚数”的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点(-4,3)是角α终边上的一点,则sin(π-α)=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=sin(2x+$\frac{π}{6}$),x∈R.
(1)求函数f(x)的最小正周期.
(2)单调递增区间.
(3)用“五点作图”画出它某一周期的图象.

查看答案和解析>>

同步练习册答案