精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-1
2x+1
(x∈R)
(1)判断函数f(x)的奇偶性;
(2)若对任意的x∈R,都有不等式f(2x)+f(x2-m)>0恒成立,求实数m的取值范围.
考点:函数恒成立问题,函数奇偶性的性质
专题:综合题,函数的性质及应用
分析:(1)利用奇函数的定义,即可判断函数f(x)的奇偶性;
(2)f(x)=
2x-1
2x+1
=1-
2
2x+1
在R上递增,且为奇函数,可得x2+2x-m>0,对任意的x∈R恒成立,运用判别式小于0,即可得到m的范围.
解答: 解:(1)∵f(-x)=
2-x-1
2-x+1
=-
2x-1
2x+1
=-f(x),
∴f(x)为奇函数;
(2)∵f(x)=
2x-1
2x+1
=1-
2
2x+1
在R上递增,且为奇函数
∴f(x2-m)>f(-2x),
∴x2-m>-2x
即x2+2x-m>0,对任意的x∈R恒成立,
则判别式△=4+4m<0,解得m<-1.
点评:本题考查函数的奇偶性和单调性及运用,考查二次不等式恒成立问题,注意运用判别式小于0,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,若a4+a8+a12=12,则2a9-a10的值是(  )
A、3B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A,B为其子集,若集合A={y|y=log3x,x>3},B={y|y=(
1
2
)x,x≥1}
,则(∁UA)∩B等于(  )
A、{y|y≤
1
2
}
B、{y|0<y≤
1
2
}
C、{y|
1
2
≤y≤1}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导数,记f′′(x)=(f′(x))′,若f′′(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数(1)f(x)=sinx+cosx;(2)f(x)=lnx-2x;(3)f(x)=-x3+2x-1;(4)f(x)=-xe-x在(0,
π
2
)上不是凸函数的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对一切实数x,当a<b时,二次函数f(x)=ax2+bx+c的值恒为非负数,则b-2a-
c
2
的最大值为(  )
A、0B、1C、2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,从B处看山顶A的仰角为45°,向前100米,在D处看山顶A的仰角为60°,求:山AC的高度(已知sin15°=
6
-
2
4
,cos15°=
6
+
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,内角A,B,C的对边长分别是a,b,c,若a•
BC
+b•
CA
+c•
AB
=0.求证:△ABC是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(
π
6
-2x),x∈[-π,0]
的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,焦点在x轴上,且经过点P(
2
,0)、Q(-1,-
2
2
)

(1)求椭圆C1的标准方程;
(2)如图,以椭圆C1的长轴为直径作圆C2,过直线x=-2上的动点T作圆C2的两条切线,设切点分别为A、B,若直线AB与椭圆C1求交于不同的两点C、D,求
|AB|
|CD|
的取值范围.

查看答案和解析>>

同步练习册答案