精英家教网 > 高中数学 > 题目详情

【题目】某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.

1)求1名顾客摸球2次停止摸奖的概率;

2)记1名顾客5次摸奖获得的奖金数额,求随机变量的分布列和数学期望.

【答案】1

2)随机变量的分布列为:



10

20

30

40







.

【解析】

试题(1)这属于一个古典概型问题,可以考虑摸2次,总的方法数为,而摸2次后停止摸奖,说明第一次不是黑球,而第2次摸的是黑球,有种可能,因此所求概率为;(2)因为是不放回的摸球,因此得奖金额可能为0元、10元、20元、30元、40元,这样随机变量的分布列就要求出,奖金0元,说明第1次摸的是黑球,奖金10元说明第一次摸的是拍球或黄球,第2次黑球,奖金20元,说明第1次红球,第2次黑球或第1、第2次是白球或黄球,第3次黑球,奖金30元,第1次与第2次里有1次是红球,另一次为白球或黄球,第3次黑球,而奖金40元说明第4次是黑球,由上可计算出名概率计算出分布列,期望.

试题解析:(1)设“1名顾客摸球2次停止摸奖为事件

,(4分)

1名顾客摸球2次停止摸奖的概率

2)随机变量的所有取值为

,

9分)

所以,随机变量的分布列为:



10

20

30

40







12分)

.(14分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在点处切线的斜率为4,求实数的值;

(2)求函数的单调区间;

(3)若函数上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】临近开学季,某大学城附近的一款网红书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量(个)与时间(天)的关系如下表所示:

时间(/天)

1

4

7

11

28

日销售量(/个)

196

184

172

156

88

未来1个月内,前15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数),后15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数).

1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据(个)与(天)的关系式;

2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?

3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠元利润给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点EF分别为棱DCBC的中点,点G是棱SC靠近点C的四等分点.

求证:(1)直线平面EFG

2)直线平面SDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCEBE⊥EC.

(1)求证:平面AEC⊥平面ABE

(2)FBE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱椎中,四边形为菱形,分别为中点..

1)求证:

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx2﹣(6+ax+2alnxaR).

1)讨论fx)的单调性;

2)函数gxx2+2a4lnx1,若存在x0[1e],使得fx0)<gx0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案