精英家教网 > 高中数学 > 题目详情
7.sin65°cos20°-cos65°sin20°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 利用两角差的正弦公式,求得要求式子的值.

解答 解:sin65°cos20°-cos65°sin20°=sin(65°-20°)=sin45°=$\frac{\sqrt{2}}{2}$,
故选:C.

点评 本题主要考查两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)=|lgx|,a,b满足f(a)=f(b)=2f($\frac{a+b}{2}$)的实数,其中0<a<b,则4b-b2的取值范围是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱柱ABC-A1B1C1中已知AB=AC=AA1=2,∠BAA1=∠CAA1=60°,异面直线A1C1与BC成角为45°.
(1)求证:AA1⊥BC;
(2)求二面角B-AA1-C的余弦值;
(3)求直线A1B于平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的前n项和为Sn,满足:an2=2Sn-an(n∈N+
(1)证明:数列{an}为等差数列,并求数列{an}的通项公式;
(2)设bn=3n+(-1)n-1λ•2an,是否存在整数λ(λ≠0),使bn+1>bn对一切n∈N+恒成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示的四边形ABCD,已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}∥\overrightarrow{DA}$且-2≤x<1,求函数y=f(x)的值域;
(2)若$\overrightarrow{BC}∥\overrightarrow{DA}$且$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:?x∈R,x-2>0,命题q:?x∈R,$\sqrt{x}$>x,则下列说法中正确的是④.
①命题p∨q是假命题          
②命题p∧q是真命题
③命题p∨(¬q)是假命题      
④命题p∧(¬q)是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)证明:CD⊥面PAD;
(2)求直线AC与PB所成的角;
(3)求点P到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断下列对应哪些是由A到B的映射?为什么?
(1)A=R,B={y|y>0},f:x→y=1+$\frac{1}{|x|}$
(2)A=R,B={y|y≥0},f:x→y=x2
(3)A={x|x≥3},B={y|y≥0},f:x→y=$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知下列随机变量:
①10件产品中有2件次品,从中任选3件,取到次品的件数X;
②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;
③刘翔在一次110米跨栏比赛中的成绩X;
④在体育彩票的抽奖中,一次摇号产生的号码数X.
其中X是离散型随机变量的是(  )
A.①②③B.②③④C.①②④D.③④

查看答案和解析>>

同步练习册答案