精英家教网 > 高中数学 > 题目详情
4.已知P在△ABC所在平面内,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,则点P是△ABC的(  )
A.重心B.内心C.外心D.垂心

分析 根据 $\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$,移向并根据向量的数量积的运算法则,得到 $\overrightarrow{PB}$•($\overrightarrow{CA}$)=0,因此有PB⊥CA,同理可得PA⊥BC,PC⊥AB,根据三角形五心的定义,即可求得结果

解答 解:∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$,
∴$\overrightarrow{PB}$•($\overrightarrow{CA}$)=0,
∴PB⊥CA,
同理可得PA⊥BC,PC⊥AB,
∴P是△ABC的垂心.
故选:D.

点评 本小题主要考查向量的数量积的运算法则、三角形垂心等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)在(1)的条件下,证明{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列,并求an
(3)在(1)的条件下,求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在二项式(x-$\frac{1}{2\root{3}{x}}$)n的展开式中,前三项系数的绝对值成等差数列.
(Ⅰ)求展开式中二项式系数最大的项的系数;
(Ⅱ)设(x-$\frac{1}{2\root{3}{x}}$)n展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.制造一种零件,甲机床的正品率为0.90,乙机床的正品率为0.80,分别从它们制造的产品中任意抽取一件,求:
(1)两件都是正品的概率;
(2)两件都是次品的概率;
(3)恰有一件正品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简sin420°的值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三个点A(2,1)、B(3,2)、D(-1,4).
(Ⅰ)求证:$\overrightarrow{AB}⊥\overrightarrow{AD}$;
(Ⅱ)要使四边形ABCD为矩形,求点C的坐标,并求矩形ABCD两对角线所夹锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,设A,B两点在河的两岸,一测量者在点A所在的同侧河岸边选定一点C,测出AC的距离为100m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为(  )
A.100$\sqrt{3}$ mB.100$\sqrt{2}$ mC.50$\sqrt{2}$ mD.25$\sqrt{2}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题P:?x∈Rx2+2ax+a≤0,若命题P是假命题,则实数a取值范围(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=lnx-x+1的极值点是x=1.

查看答案和解析>>

同步练习册答案