精英家教网 > 高中数学 > 题目详情
对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“保三角形函数”.以下说法正确的是(  )
A、f(x)=1(x∈R)不是“保三角形函数”
B、若定义在R上的函数f(x)的值域是[
e
,e](e为自然对数的底数),则f(x)一定是“保三角形函数”
C、f(x)=
1
x2+1
(x∈R)是“保三角形函数”
D、“保三角形函数”一定是单调函数
考点:进行简单的合情推理
专题:函数的性质及应用
分析:由题,根据“可构造三角形函数”的定义对四个选项进行判断即可得出正确选项
解答: 解:对于A选项,由题设所给的定义知,?a,b,c∈R,f(a),f(b),f(c)都是某一正三角形的三边长,是“可构造三角形函数”,故A选项错误;
对于B选项,由于
e
+
e
>e,可知,定义在R上的函数f(x)的值域是[
e
,e](e为自然对数的底数),则f(x)一定是“可构造三角形函数”,故B正确
对于C选项,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=
1
5
,不构成三角形,故C错误;
对于D选项,由A选项判断过程知,D选项错误;
故选:B.
点评:本题考查综合法推理及函数的值域,三角形的性质,理解新定义是解答的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
4
-y2=1的顶点到其渐近线的距离等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1右支上一点,F是双曲线的右焦点,点M在直线x=-
a2
c
上,若
OP
=
OF
+
OM

OP
FM
=0,则双曲线的离心率e=(  )
A、2
B、
3
C、
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x3+x
x2
+3(x>0)的最小值是(  )
A、5
B、3
33
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%,则下列哪个奖励模型比较符合该公司的要求(  )
A、y=0.25x
B、y=log7x+1
C、y=1.002x
D、y=
3x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,(a+i)(1+i)是纯虚数,则a等于(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
y≤x
x+y≤1
y≥-1
,则z=2x+y的最小值是(  )
A、3
B、-3
C、
3
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别a,b,c.已知向量
m
=(cosA,a),
n
=(b-2c,cosB-2cosC),满足
m
n

(1)求
sinB
sinC
的值;
(2)若cosA=
1
4
,a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中点.
(Ⅰ)证明:C1D⊥平面BDC;
(Ⅱ)设AA1=2,求几何体C-BC1D的体积.

查看答案和解析>>

同步练习册答案