分析 求出函数的定义域以及函数的导数,求出极值点,通过列表判断函数的导数的符号,推出函数的单调性求解函数的极值即可.
解答 解:函数f(x)的定义域为R.
当a=1时,f'(x)=ex(x+2)(x+1)…(2分)
当x变化时,f'(x),f(x)的变化情况如表:
| x | (-∞,-2) | -2 | (-2,-1) | -1 | (-1,+∞) |
| f'(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
点评 本题考查函数的单调性以及函数的极值的求法,考查函数的导数的运算,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 3 | 4 | 6 | 5 | 7 |
| 不得禽流感 | 得禽流感 | 总计 | |
| 服药 | |||
| 不服药 | |||
| 总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\frac{15}{8}$ | D. | $\frac{17}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 可导函数f(x)为增函数的充要条件是f'(x)>0. | |
| B. | 若f(x)可导,则f'(x0)=0是x0为f(x)的极值点的充要条件. | |
| C. | f(x)在R上可导,若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,则?x∈R,f'(x)>2017. | |
| D. | 若奇函数f(x)可导,则其导函数f'(x)为偶函数. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 260 | B. | 280 | C. | 300 | D. | 320 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 价格x | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
| 需求量y | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=-\frac{11π}{24}$ | B. | $x=\frac{π}{8}$ | C. | $x=\frac{π}{4}$ | D. | $x=\frac{11π}{24}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com