精英家教网 > 高中数学 > 题目详情
6.如图给出的是计算1+3+5+…+99的一个程序框图,其中判断内应填入的条件是(  )
A.i<99B.i>99C.i<100D.i>100

分析 模拟执行程序框图,依次写出每次循环得到的T,i的值,当i=101时,由题意,不满足条件,退出循环,输出T的值为:1+3+…+97+99,结合选项,可得判断内应填入的条件是i<100.

解答 解:模拟执行程序框图,可得
T=0,i=1
T=1,i=3
满足条件,T=1+3,i=5
满足条件,T=1+3+5,i=7

满足条件,T=1+3+…+97,i=99
满足条件,T=1+3+…+97+99,i=101
此时,由题意,不满足条件,退出循环,输出T的值为:1+3+…+97+99,
结合选项,可得判断内应填入的条件是i<100.
故选:C.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,所以基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知:x2+y2=2,则x-2y的最小值为(  )
A.-$\sqrt{10}$B.-$\sqrt{5}$C.$\sqrt{5}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校高三年有375名学生,其中男生150人,女生225人.为调查该校高三年学生每天课外阅读的平均时间(单位:小时),采用分层抽样的方法从中随机抽取25人获得样本数据,该样本数据的频率分布直方图如图.

(Ⅰ)应抽取男生多少人?并根据样本数据,估计该校高三年学生每天课外阅读的平均时间;
(Ⅱ)在这25个样本中,从每天阅读平均时间不少于1.5小时的学生中任意抽取两人,求抽中的这两个人中恰有一个人的阅读平均时间不少于2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,空间四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在线段OA上,且OM=2MA,点N为BC的中点,则$\overrightarrow{MN}$=(  )
A.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数学、英语的成绩分别有优、良、及格、不及格四个档次,某班共60人,在每个档次的人数如表:
及格不及格
1311
1076
及格2409
不及格1b7a+4
(1)求数学及格且英语良的概率;
(2)在数学及格的条件下,英语良的概率;
(3)若数学良与英语不及格是相互独立的,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在0~1随机选择两个数x,y,这两个数对应的点把0~1的线段分成了三条线段a,b,c,则这三条线段a,b,c能构成三角形的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$后的图形.
(1)$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1
(2)$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{12}$=1
(3)y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式:|x-1|+|2x-4|≤5.

查看答案和解析>>

同步练习册答案