精英家教网 > 高中数学 > 题目详情
1.不等式$\frac{1}{x-1}$≤$\frac{1}{{x}^{2}-1}$的解集为(  )
A.(-∞,-1)B.[0,1)C.(-∞,-1)∪[0,1)D.(-1,0]∪(1,+∞)

分析 原不等式等价于等价于$\left\{\begin{array}{l}{x(x-1)(x+1)≤0}\\{(x-1)(x+1)≠0}\end{array}\right.$,解得即可.

解答 解:不等式$\frac{1}{x-1}$≤$\frac{1}{{x}^{2}-1}$等价于$\frac{1}{x-1}$-$\frac{1}{{x}^{2}-1}$≤0,等价于$\frac{x}{(x+1)(x-1)}$≤0,等价于$\left\{\begin{array}{l}{x(x-1)(x+1)≤0}\\{(x-1)(x+1)≠0}\end{array}\right.$,
解得x<-1,或0≤x<1,
故不等式的解集为(-∞,-1)∪[0,1],
故选:C.

点评 本题考查了分式不等式和高次不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线方程为$y=±\sqrt{2}x$,抛物线N的顶点为坐标原点,焦点在x轴上,点E(2,2)为双曲线M与抛物线N的一个公共点.
(Ⅰ)求双曲线M与抛物线N的方程;
(Ⅱ) 过抛物线N的焦点F作两条相互垂直的直线l1,l2,与抛物线分别交于点A、B,C、D.
(ⅰ)若直线EA与直线EB的倾斜角互补(点A,B不同于E点),求直线l1的斜率;
(ⅱ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线2x2-y2=6的焦距为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线C:x2-y2=1的焦点到渐近线的距离等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线截圆(x-2)2+y2=3所得的弦长等于2$\sqrt{2}$,则双曲线的离心率为(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式|x+1|≥kx的解集为R,则实数k的取值范围为(  )
A.k≤0B.-1≤k≤0C.k≥0D.0≤k≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},则A∩(∁UB)=(  )
A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={y|y=x2-4x+5},集合B={x|x2-1=0},则A∩B=(  )
A.{-1}B.{1}C.{-1,1,5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将y=cos(2x+φ)的图象沿x轴向右平移$\frac{π}{6}$个单位后,得到一个奇函数的图象,则φ的一个可能值为(  )
A.$\frac{π}{6}$B.-$\frac{π}{3}$C.-$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案