分析 由椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦点F1、F2在x轴上,离心率为$\frac{1}{3}$,知长半轴a=3,利用椭圆的定义知,△ABF2的周长为4a,从而可得答案.
解答 解:∵椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1的焦点F1、F2在x轴上,离心率为$\frac{1}{3}$,
∴$\frac{\sqrt{{a}^{2}-8}}{a}$=$\frac{1}{3}$
∴a=3,
又过焦点F1的直线与椭圆交于A,B两点,A,B与椭圆的另一个焦点F2构成△ABF2,
则△ABF2的周长l=|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=12.
故答案为:12
点评 本题考查了椭圆的简单性质,着重考查椭圆定义的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 年收入平均数大大增大,中位数一定变大,方差可能不变 | |
| B. | 年收入平均数大大增大,中位数可能不变,方差变大 | |
| C. | 年收入平均数大大增大,中位数可能不变,方差也不变 | |
| D. | 年收入平均数可能不变,中位数可能不变,方差可能不变 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10$\sqrt{2}$ | B. | 2$\sqrt{10}$ | C. | $\sqrt{10}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com