精英家教网 > 高中数学 > 题目详情
7.过抛物线y2=4x的焦点,引倾斜角为60°的直线,交抛物线于A、B两点,则△OAB的面积为$\frac{{4\sqrt{3}}}{3}$.

分析 设A(x1,y1),B(x2,y2),则x=1+$\frac{\sqrt{3}}{3}$y代入y2=4x得:y2-$\frac{3\sqrt{3}}{3}$y-4=0,S=$\frac{1}{2}$|OF|•|y1-y2|,由此能求出△OAB的面积.

解答 解:设A(x1,y1),B(x2,y2),则
过F且倾斜角为60°的直线y=$\sqrt{3}$(x-1),
即x=1+$\frac{\sqrt{3}}{3}$y代入y2=4x得:y2-$\frac{3\sqrt{3}}{3}$y-4=0,∴y1+y2=$\frac{{4\sqrt{3}}}{3}$,y1y2=-4,
∴|y1-y2|=$\sqrt{\frac{48}{9}+16}$=$\frac{8\sqrt{3}}{3}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×1×$\frac{8\sqrt{3}}{3}$=$\frac{{4\sqrt{3}}}{3}$.
故答案为$\frac{{4\sqrt{3}}}{3}$.

点评 本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.在涉及焦点弦的问题时常需要把直线与抛物线方程联立利用韦达定理设而不求,进而利用抛物线的定义求得问题的答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数g(x)是R上的偶函数,当x<0时,g(x)=ln(1-x),函数$f(x)=\left\{\begin{array}{l}{x^3},x≤0\\ g(x),x>0\end{array}\right.$满足f(2-x2)>f(x),则实数x的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(1,2)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,输出的S值为(  )
A.1B.$\sqrt{2015}-1$C.$\sqrt{2016}-1$D.$\sqrt{2017}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在三角形ABC中,$sinA=\frac{4}{5},cosB=\frac{5}{13}$,则cosC=(  )
A.$\frac{33}{65}$或$\frac{63}{65}$B.$\frac{63}{65}$C.$\frac{33}{65}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.参加成都七中数学选修课的同学,对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图:

定价x(元/kg)102030405060
年销量y(kg)115064342426216586
z=2lny14.112.912.111.110.28.9
(参考数据:$\sum_{i=1}^6{({x_i}-\overline x)}•({y_i}-\overline y)=-34580$,$\sum_{i=1}^6{({x_i}-\overline x)}•({z_i}-\overline z)=-175.5$$\sum_{i=1}^6{{{({y_i}-\overline y)}^2}}=776840$,$\sum_{i=1}^6{({y_i}-\overline y)}•({z_i}-\overline z)=3465.2$)
(1)根据散点图判断,y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?
(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).
(3)定价为多少元/kg时,年利润的预报值最大?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x+$\widehat{a}$的斜率和截距的最小二乘估计分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-n•$\widehat{b}$•$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若一个椭圆的内接正方形有两边分别经过它的两个焦点,则此椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.所给命题:
①菱形的两条对角线互相平分的逆命题;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③对于命题:“p且q”,若p假q真,则“p且q”为假;
④有两条边相等且有一个内角为60°是一个三角形为等边三角形的充要条件.
其中为真命题的序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)=5|x|-$\frac{1}{1+{x}^{2}}$,则使得f(2x+1)>f(x)成立的x取值范围是(  )
A.(-1,-$\frac{1}{3}$)B.(-3,-1)C.(-1,+∞)D.(-∞,-1)∪(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案