精英家教网 > 高中数学 > 题目详情
5.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.m?α,n?α,m∥β,n∥β,则α∥βB.m∥α,n∥β,且α∥β,则m∥n
C.m⊥α,n?β,m⊥n,则α⊥βD.m⊥α,n⊥β,且α⊥β,则m⊥n

分析 在A中,α与β平行或相交;在B中,m与n相交、平行或异面;在C中,α与β相交或平行;在D中,由面面垂直、线面垂直的性质定理得m⊥n.

解答 解:由m,n是两条不同的直线,α,β是两个不同的平面,知:
在A中,m?α,n?α,m∥β,n∥β,则α与β平行或相交,故A错误;
在B中,m∥α,n∥β,且α∥β,则m与n相交、平行或异面,故B错误;
在C中,m⊥α,n?β,m⊥n,则α与β相交或平行,故C错误;
在D中,m⊥α,n⊥β,且α⊥β,则由面面垂直、线面垂直的性质定理得m⊥n,故D正确.
故选:D.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知数列{an},{bn}的前n项和分别为An,Bn,且A1000=2,B1000=1007.记Cn=an•Bn+bn•An-an•bn(n∈N*),则数列{Cn}的前1000项的和为2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是实数常数)的图象上的一个最高点($\frac{π}{6}$,1),与该最高点最近的一个最低点是($\frac{2π}{3}$,-3)
(1)求函数f(x)的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{1}{2}$ac,求函数$f(B+\frac{π}{8})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}和等比数列{bn}中,已知a1=-8,a2=-2,b1=1,b2=2,那么满足an=bn的n的所有取值构成的集合是{3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=2sin({2x+\frac{π}{3}})$,则$f({\frac{2π}{3}})$=-$\sqrt{3}$;若f(x)=-2,则满足条件的x的集合为$\{x|x=kπ-\frac{5}{12}π\;,k∈Z\}$;将f(x)的图象向右平移$\frac{π}{6}$个单位再向下平移2个单位,得到函数g(x),则g(x)的解析式为g(x)=2sin2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为60°,且丨$\overrightarrow{a}$丨=2,丨$\overrightarrow{a}$-2$\overrightarrow{b}$丨=2$\sqrt{7}$,则丨$\overrightarrow{b}$丨=(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知公差不为0的等差数列{an}中,a1,a3,a7成等比数列,且a2n=2an-1,等比数列{bn}满足bn+bn+1=$\frac{4}{{3}^{n+1}}$.
(1)求数列{an},{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M,N分别是棱CC1,BC的中点,点P在直线A1B1上.
(1)求直线PN与平面ABC所成的角最大时,线段A1P的长度;
(2)是否存在点P,使平面PMN与平面ABC所成的二面角为$\frac{π}{6}$,若存在,请指明点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2($\frac{3}{2}$-x)的单调增区间为(  )
A.(-1,0)、(0,1)B.(-∞,0)、(1,+∞)C.(0,3)D.(0,1)

查看答案和解析>>

同步练习册答案