精英家教网 > 高中数学 > 题目详情
5.下列赋值语句正确的是(  )
A.3=MB.a+1=MC.M-1=aD.M=a+1

分析 根据赋值语句的功能,我们逐一分析四个答案中四个赋值语句,根据赋值号左边只能是变量,右边可以是任意表达式,即可得到答案.

解答 解:3=M中,赋值号的左边是表达式,故A错误;
a+1=M中,赋值号的左边是表达式,故B错误;
M-1=a中,赋值号的左边是表达式,故C错误;
只有D:M=a+1是正确的赋值语句.
故选:D

点评 本题考查的知识点是赋值语句,其中熟练掌握赋值语句的功能和格式,是解答本题的关键.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过直线x+y-2$\sqrt{2}$=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在△ABC中,∠C=90°,AC=3,BC=4,AB边(包括端点)上一点F,BC边(包括端点)上一点E满足线段EF分△ABC的面积为相等的两部分;
(1)设BF=x,EF=y,将y表示为x的函数;
(2)求线段EF长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\frac{2i}{1-i}+ai=b-2i(a,b∈R)$.求$\int_{\;\;a}^{\;b}{(3{x^2}}-2)dx$=22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.条件p:|x+1|>1,条件$q:\frac{1}{3-x}>1$,则¬q是¬p的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n项和为Sn,a1=1,Sn=3an+1-3,则an=(  )
A.${({\frac{4}{3}})^{n-1}}$B.${({\frac{3}{4}})^{n-1}}$C.3n-1D.${({\frac{1}{3}})^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=ax-1+1(a>0且a≠1)的反函数恒过定点(  )
A.(0,2)B.(2,0)C.(1,2)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=a2x2(a>0),$g(x)=\sqrt{9-{{(x-b)}^2}}$.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为$\sqrt{2}$,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设$a=\frac{{\sqrt{2}}}{2}$,$b=\frac{{5\sqrt{3}}}{2}$,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案