精英家教网 > 高中数学 > 题目详情
17.关于函数f(x)=sin(2x-$\frac{π}{6}$)(x∈R),给出下列三个结论:
①函数f(x)的图象与g(x)=cos(2x-$\frac{2π}{3}$)的图象重合;
②函数f(x)的图象关于点($\frac{π}{12}$,0)对称;
③函数f(x)的图象关于直线x=$\frac{π}{3}$对称.
其中正确的个数是(  )
A.0个B.1个C.3个D.2个

分析 ①根据三角函数的图象关系进行判断.
②根据三角函数的对称性进行判断.
③根据三角函数的对称性进行判断.

解答 解:①函数f(x)=sin(2x-$\frac{π}{6}$)=cos[$\frac{π}{2}$-(2x-$\frac{π}{6}$)]=cos($\frac{2π}{3}$-2x)=cos(2x-$\frac{2π}{3}$),故①正确;
②f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$-$\frac{π}{6}$)=sin($\frac{π}{6}$-$\frac{π}{6}$)=sin0=0,即函数f(x)的图象关于点($\frac{π}{12}$,0)对称成立,故②正确;
③f($\frac{π}{3}$)=sin(2×$\frac{π}{3}$-$\frac{π}{6}$)=sin$\frac{π}{2}$=1为最大值,即函数f(x)的图象关于直线x=$\frac{π}{3}$对称成立,故③正确,
综上正确的个数3个,
故选:C

点评 本题主要考查与三角函数有关的图象和性质,根据三角函数的对称性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.化简:
(1)sin($\frac{π}{2}$+α)cos2($\frac{π}{2}$+α)sin(3π-α)tan(π+α);
(2)$\frac{sin(-4π+α)cos(π-α)cos(\frac{π}{2}+α)sin(\frac{11π}{2}-α)}{sin(-\frac{π}{2}-α)cos(3π-α)cos(\frac{9π}{2}+α)sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.i为虚数单位,复数$\frac{i}{1-2i}$=$-\frac{2}{5}+\frac{1}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知:tanα=5,求下列各式的值.
(1)$\frac{5sinα-3cosα}{7sinα+9cosα}$;
(2)$\frac{co{s}^{2}α}{4si{n}^{2}α+2sinαcosα-3}$;
(3)2sin2α-3cosαsinα+5cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|=2|\overrightarrow b|$,则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面为矩形,AB=$\sqrt{2}$,BC=1,E,F分别是AB,PC的中点,DE⊥PA,求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={m|m=a+b$\sqrt{2}$,a,b∈Q},则下列元素中属于集合M的有(  )
①m=1+$\sqrt{2}$π;②m=$\sqrt{7+2\sqrt{12}}$;③m=$\frac{1}{2+\sqrt{2}}$;④m=$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的三边长分别为AB=$\sqrt{{m}^{2}+{n}^{2}}$,AC=$\sqrt{{m}^{2}+{t}^{2}}$,BC=$\sqrt{{n}^{2}+{t}^{2}}$,其中m,n,t∈(0,+∞),则△ABC是(  )
A.直角三角形B.钝角三角形
C.锐角三角形D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某程序框图如图所示,则输出的结果为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{3}$D.-3

查看答案和解析>>

同步练习册答案