精英家教网 > 高中数学 > 题目详情
9.已知集合M={m|m=a+b$\sqrt{2}$,a,b∈Q},则下列元素中属于集合M的有(  )
①m=1+$\sqrt{2}$π;②m=$\sqrt{7+2\sqrt{12}}$;③m=$\frac{1}{2+\sqrt{2}}$;④m=$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$.
A.0个B.1个C.2个D.3个

分析 ①由于π∉Q,即可判断出m与M的关系;
②由于m=$\sqrt{(\sqrt{4}+\sqrt{3})^{2}}$=2+$\sqrt{3}$,即可判断出m与M的关系;
③由m=$\frac{2-\sqrt{2}}{2}$=1-$\frac{1}{2}\sqrt{2}$,即可判断出m与M的关系;
④由m2=4+2$\sqrt{(2-\sqrt{3})(2+\sqrt{3})}$=6,即可判断出m与M的关系.

解答 解:①∵π∉Q,∴m∉M;
②∵m=$\sqrt{7+2\sqrt{12}}$=$\sqrt{(\sqrt{4}+\sqrt{3})^{2}}$=2+$\sqrt{3}$,$\sqrt{3}≠\sqrt{2}$,∴m∉M;
③∵m=$\frac{1}{2+\sqrt{2}}$=$\frac{2-\sqrt{2}}{2}$=1-$\frac{1}{2}\sqrt{2}$,a=1,b=-$\frac{1}{2}$,∴m∈M;
④∵m=$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$,∴m2=4+2$\sqrt{(2-\sqrt{3})(2+\sqrt{3})}$=6,∴m=$\sqrt{6}$∉M.
综上可得:只有③满足条件.
故选:B.

点评 本题考查了元素与集合之间的关系、根式的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知各项都不相等的等差数列{an},a4=10,又a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定点A(0,4)和双曲线x2-4y2=16上的动点B,点P分有向线段AB的比为1:3,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于函数f(x)=sin(2x-$\frac{π}{6}$)(x∈R),给出下列三个结论:
①函数f(x)的图象与g(x)=cos(2x-$\frac{2π}{3}$)的图象重合;
②函数f(x)的图象关于点($\frac{π}{12}$,0)对称;
③函数f(x)的图象关于直线x=$\frac{π}{3}$对称.
其中正确的个数是(  )
A.0个B.1个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定点P(0,1),动点Q满足线段PQ的垂直平分线与抛物线y=x2相切,则Q的轨迹方程是x2+2(y+1)(y-1)2+2x2(y-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{sin(cosx)}$的定义域是{x|-$\frac{π}{2}$$+2kπ≤x≤2kπ+\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若扇形的周长为20cm,当扇形的圆心角α为多大弧度时,这个扇形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-2,4),$\overrightarrow{c}$=(-1,-2),求$\overrightarrow{a}$•$\overrightarrow{b}$,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$),$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$),($\overrightarrow{a}$+$\overrightarrow{b}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且$\sqrt{3}$(tanA-tanB)=1+tanA•tanB,a2-ab=c2-b2,求A、B、C的大小.

查看答案和解析>>

同步练习册答案