精英家教网 > 高中数学 > 题目详情
1.若扇形的周长为20cm,当扇形的圆心角α为多大弧度时,这个扇形的面积最大?

分析 根据扇形的弧长公式和面积公式可以直接求值.

解答 解:设扇形的圆心角为α,半径为R,弧长为l,
扇形的弧长为l=20-2r,其中r为半径,
面积S=$\frac{(20-2r)r}{2}$=-r2+10r=-(r-5)2+25,
∴当r=5时,扇形面积最大为25,这时l=10,圆心角α=$\frac{l}{r}$=2rad.

点评 本题考查扇形的弧长公式和面积公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an},{bn}满足:a1=2,b1=2015,且对任意的正整数n,an,an+1,bn和an+1,bn+1,bn均成等差数列
(1)证明:{an-bn}和{an+2bn}均成等比数列
(2)是否存在唯一的正整数c,使得an<c<bn恒成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|=2|\overrightarrow b|$,则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={m|m=a+b$\sqrt{2}$,a,b∈Q},则下列元素中属于集合M的有(  )
①m=1+$\sqrt{2}$π;②m=$\sqrt{7+2\sqrt{12}}$;③m=$\frac{1}{2+\sqrt{2}}$;④m=$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的三边长分别为AB=$\sqrt{{m}^{2}+{n}^{2}}$,AC=$\sqrt{{m}^{2}+{t}^{2}}$,BC=$\sqrt{{n}^{2}+{t}^{2}}$,其中m,n,t∈(0,+∞),则△ABC是(  )
A.直角三角形B.钝角三角形
C.锐角三角形D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=x2-4x-5在[0,a]上的最大值当a∈(0,4)时,最大值为-5;当a∈[4,+∞)时,最大值为a2-4a-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列表述正确的是(  )
①归纳推理是由部分到整体的推理;
②归纳推理是由一般到一般的推理;
③演绎推理是由一般到特殊的推理;
④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
A.①②③B.②③④C.①③⑤D.②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(1,-1),N(-1,1),则以线段MN为直径的圆的方程是(  )
A.x2+y2=$\sqrt{2}$B.x2+y2=1C.x2+y2=4D.x2+y2=2

查看答案和解析>>

同步练习册答案