精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值是3.

分析 由已知得到向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角以及向量$\overrightarrow{b}$的模,将所求平方,转化为模的平方和数量积的运算.

解答 解:如图可知$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,所以$|\overrightarrow{a}|=|\overrightarrow{b}|=\sqrt{3}$,$\overrightarrow{a}•\overrightarrow{b}$=-$\frac{3}{2}$
所以|$\overrightarrow{a}$-$\overrightarrow{b}$|2=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=3+3++3=9,
所以|$\overrightarrow{a}$-$\overrightarrow{b}$|=3;
故答案为:3.

点评 本题考查了向量的三角形法则的运用以及求没有坐标的向量模的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.数列{an}的通项公式为an=n2-5n+4,画出该数列在1≤n≤5的图象,并判断从第几项起,这个数列是递增的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设集合A={x|x2-3x+2=0},集合B={x|x2-4x+a=0,a为常数},若B?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定点P(0,1),动点Q满足线段PQ的垂直平分线与抛物线y=x2相切,则Q的轨迹方程是x2+2(y+1)(y-1)2+2x2(y-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x,xy,$\sqrt{xy-1}$},B={0,|x|,y},若A=B,求实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若扇形的周长为20cm,当扇形的圆心角α为多大弧度时,这个扇形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:$\frac{{x}^{2014}+5{x}^{1949}}{5{x}^{2015}-{x}^{1945}}$=$\frac{{x}^{69}+5{x}^{4}}{5{x}^{70}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,线段AB长度为2,以AB为直径作半圆O,又以半圆O的一条弦AC为边作正方形ACDE,设△OED的面积为S,∠CAB=α.
(1)试将S表示成关于α的函数;
(2)求S的最大值,并求S取得最大值时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x-2与圆x2+y2-4x+3=0交于A、B两点,与抛物线y2=8x交于C、D两点,则|AB|+|CD|=(  )
A.16B.14C.18D.$14\sqrt{2}$

查看答案和解析>>

同步练习册答案