精英家教网 > 高中数学 > 题目详情
19.直线y=x-2与圆x2+y2-4x+3=0交于A、B两点,与抛物线y2=8x交于C、D两点,则|AB|+|CD|=(  )
A.16B.14C.18D.$14\sqrt{2}$

分析 由已知圆的方程为(x-2)2+y2=1,抛物线y2=8x的焦点为(2,0),直线y=x-2过(2,0)点,则|AB|+|CD|=|AD|-2,直线代入抛物线方程,有x2-12x+4=0,由此能够推导出|AB|+|CD|=16-2=14.

解答 解:由已知圆的方程为(x-2)2+y2=1,抛物线y2=8x的焦点为(2,0),直线y=x-2过(2,0)点,
则|AB|+|CD|=|AD|-2,
直线代入抛物线方程,有x2-12x+4=0,
设A(x1,y1),D(x2,y2),则x1+x2=12,
则有|AD|=(x1+x2)+4=16,
故|AB|+|CD|=16-2=14,
故选:C.

点评 本题考查圆锥曲线和直线的综合运用,考查抛物线的定义,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.假定一个家庭有两个小孩,生男、生女是等可能的,在已知有一个是女孩的前提下,则另一个小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若对区间D上的任意x都有f1(x)≤f(x)≤f2(x)成立,则称f(x)为f1(x)到f2(x)在区间D上的“任性函数”,已知 f1(x)=lnx+x2,f2(x)=$\frac{1}{x}$+3x,若f(x)=x+a是f1(x)到f2(x)在[$\frac{1}{2}$,1]上的“任性函数”,则a的取值范围是0$≤a≤2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,A=120°,b=1,S△ABC=$\sqrt{3}$
(1)求a、c的大小;     
(2)求sin(B+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(1,-1),N(-1,1),则以线段MN为直径的圆的方程是(  )
A.x2+y2=$\sqrt{2}$B.x2+y2=1C.x2+y2=4D.x2+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$\overrightarrow{a}=(\frac{3}{2},sinα),\overrightarrow{b}=(cosα,\frac{1}{3})$,且$\overrightarrow{a}∥\overrightarrow{b}$,则锐角α=(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设A={x|x2+(4-a2)x+a+3=0},B={x|x2-5x+6=0},C={x|2x2-5x+2=0}.
(1)若A∩B=A∪B,求a的值;
(2)若A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xlnx,则下列说法正确的是(  )
A.f (x)在(0,+∞)上单调递增B.f (x)在(0,+∞)上单调递减
C.f (x)在(0,$\frac{1}{e}$)上单调递增D.f (x)在(0,$\frac{1}{e}$)上单调递减

查看答案和解析>>

同步练习册答案