精英家教网 > 高中数学 > 题目详情
10.假定一个家庭有两个小孩,生男、生女是等可能的,在已知有一个是女孩的前提下,则另一个小孩是男孩的概率是$\frac{2}{3}$.

分析 记事件A为“其中一个是女孩”,事件B为“其中一个是男孩”,分别求出A、B的结果个数,问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式求解即可.

解答 解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.
记事件A为“其中一个是女孩”,事件B为“其中一个是男孩”,则A={(男,女),(女,男),(女,女)},
B={(男,女),(女,男),(男,男)},AB={(男,女),(女,男)}.
于是可知P(A)=$\frac{3}{4}$,P(AB)=$\frac{2}{4}$.
问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)=$\frac{\frac{2}{4}}{\frac{3}{4}}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查条件概率的计算公式:P(B|A)=)=$\frac{P(AB)}{P(A)}$,等可能事件的概率的求解公式:P(M)=$\frac{m}{n}$其中n为试验的所有结果,m为基本事件的结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设集合A={x|x2-3x+2=0},集合B={x|x2-4x+a=0,a为常数},若B?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:$\frac{{x}^{2014}+5{x}^{1949}}{5{x}^{2015}-{x}^{1945}}$=$\frac{{x}^{69}+5{x}^{4}}{5{x}^{70}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,线段AB长度为2,以AB为直径作半圆O,又以半圆O的一条弦AC为边作正方形ACDE,设△OED的面积为S,∠CAB=α.
(1)试将S表示成关于α的函数;
(2)求S的最大值,并求S取得最大值时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=[x2-(a+3)x+b]ex,其中a,b∈R.
(1)当a=-3,b=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x=1是函数f(x)的一个极值点,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,PA=PD=4,BC=$\frac{1}{2}$AD=2,CD=2$\sqrt{3}$.
(Ⅰ)求证:PA⊥CD;
(Ⅱ) 若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;
(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为$\frac{\sqrt{13}}{13}$,若存在,确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x+1)=x-1+ex+1,则函数f(x)在点(0,f(0))处的切线与坐标轴围成的三角形的面积为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x-2与圆x2+y2-4x+3=0交于A、B两点,与抛物线y2=8x交于C、D两点,则|AB|+|CD|=(  )
A.16B.14C.18D.$14\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,A=$\frac{π}{3},a=2\sqrt{3}$,则在△ABC的外接圆中,大小为30°的圆心角所对的弧长为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案