精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足an+1=-$\frac{1}{{{a_n}+2}}$,其中a1=0.
(1)求证$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,并求数列{an}的通项公式;
(2)设Tn=an+an+1+…+a2n-1.若Tn≤p-n对任意的n∈N*恒成立,求p的最小值.

分析 (1)an+1=-$\frac{1}{{{a_n}+2}}$,可得an+1+1=$\frac{{a}_{n}+1}{{a}_{n}+2}$,取倒数化简即可证明.
(2)Tn=an+an+1+…+a2n-1≤p-n,可得n+an+an+1+…+a2n-1≤p,即(1+an)+(1+an+1)+(1+an+2)+…+(1+a2n-1)≤p,对任意n∈N*恒成立,而1+an=$\frac{1}{n}$,设H(n)=(1+an)+(1+an+1)+…+(1+a2n-1),考虑其单调性即可得出.

解答 (1)证明:∵an+1=-$\frac{1}{{{a_n}+2}}$,∴an+1+1=-$\frac{1}{{{a_n}+2}}$+1=$\frac{{a}_{n}+2-1}{{a}_{n}+2}$=$\frac{{a}_{n}+1}{{a}_{n}+2}$,(2分)
由于an+1≠0,∴$\frac{1}{{a}_{n+1}+1}$=$\frac{{a}_{n}+2}{{a}_{n}+1}$=1+$\frac{1}{{a}_{n}+1}$,(3分)
∴{$\frac{1}{{a}_{n}+1}$}是以1为首项,1为公差的等差数列.(4分)
$\frac{1}{{a}_{n}+1}$=1+(n-1)=n,∴an=$\frac{1}{n}$-1.                  (6分)
(2)∵Tn=an+an+1+…+a2n-1≤p-n,
∴n+an+an+1+…+a2n-1≤p,
即(1+an)+(1+an+1)+(1+an+2)+…+(1+a2n-1)≤p,对任意n∈N*恒成立,(7分)
而1+an=$\frac{1}{n}$,
设H(n)=(1+an)+(1+an+1)+…+(1+a2n-1),8 分
∴H(n)=$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$,
H(n+1)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n-1}$+$\frac{1}{2n}$+$\frac{1}{2n+1}$,(9分)
∴H(n+1)-H(n)=$\frac{1}{2n}$+$\frac{1}{2n+1}$-$\frac{1}{n}$=$\frac{1}{2n+1}$-$\frac{1}{2n}$<0,
∴数列{H(n)}单调递减,(10分)
∴n∈N*时,H(n)≤H(1)=1,故p≥1.
∴p的最小值为1.(12分)

点评 本题考查了数列递推关系、数列的单调性、等差数列的定义通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若α是第三象限角,则$\frac{α}{2}$是(  )
A.第二象限角B.第四象限角
C.第二或第三象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且Sn+1=an+1+n2
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值分别是(  )
A.$\frac{1}{2}$,$\frac{π}{6}$B.1,$\frac{π}{6}$C.1,$\frac{π}{3}$D.$\frac{1}{2}$,$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:|x+2|>1,命题q:x<a,且p是q的必要不充分条件,则a的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若方程为$\frac{x^2}{m+1}-\frac{y^2}{m-3}$=1表示双曲线,则实数m满足(  )
A.m>3或m<-1B.m≠-1且m≠3C.-1<m<3D.m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin|ωx|,若y=f(x)与y=m(m=-1)图象的公共点中,相邻两个公共点的距离的最大值为2π,则ω的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm)174176176176178
儿子身高y(cm)175175176177177
( 参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值)
则y对x的线性回归方程为$y=\frac{1}{2}x+88$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(θ)=$\overrightarrow{a}$•$\overrightarrow{b}$,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=$(sinθ,\sqrt{3}sinθ+2cosθ)$,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为$(\frac{1}{2}\;,\;\frac{{\sqrt{3}}}{2})$,求f(θ)的值;
(2)若点P(x,y)满足y=1,|x|≤1,试确定θ的取值范围,并求函数f(θ)的最小值.

查看答案和解析>>

同步练习册答案