精英家教网 > 高中数学 > 题目详情
1.若经过抛物线y2=4x焦点的直线l与圆(x-4)2+y2=4相切,则直线l的方程为y=±$\frac{2\sqrt{5}}{5}(x-1)$.

分析 求出抛物线的焦点坐标,设出l的点斜式方程,利用切线的性质列方程解出k.

解答 解:抛物线的焦点为F(1,0),设直线l的方程为y=k(x-1),即kx-y-k=0,
∵直线l与圆(x-4)2+y2=4相切,
∴$\frac{|4k-k|}{\sqrt{{k}^{2}+1}}$=2,解得k=±$\frac{2\sqrt{5}}{5}$.
∴直线l的方程为:y=±$\frac{2\sqrt{5}}{5}$(x-1).
故答案为:y=±$\frac{2\sqrt{5}}{5}$(x-1).

点评 本题考查了抛物线的性质,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F交抛物线C于A、B两点.且以AB为直径的圆M与直线y=-1相切于点N.
(1)求C的方程;
(2)若圆M与直线x=-$\frac{3}{2}$相切于点Q,求直线l的方程和圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点P(sinα,cosα)在第三象限,则角α的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若p:φ=2kπ+$\frac{π}{2}$(k∈Z),q:f(x)=sin(x+φ)是偶函数,则p是q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,试问直线AE是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.中心在原点,焦点在x轴上的双曲线C的离心率为2,直线l与双曲线C交于A,B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,若点M到抛物线焦点的距离为p,则直线l的斜率为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示),若在[5.0,5.4]内的学生人数是10,则根据图中数据可得被样本数据的中位数是4.456;视力在[3.8,4.2]人数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x3-3x,当x在区间任意取值时,函数值不小于0又不大于2的概率是(  )
A.$\frac{3-\sqrt{3}}{4}$B.$\frac{3-\sqrt{3}}{3}$C.$\frac{2-\sqrt{3}}{4}$D.$\frac{2-\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案