精英家教网 > 高中数学 > 题目详情
若抛物线y2=2px(p>0)过点A(8,-8),则点A与抛物线焦点F的距离是
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先求出抛物线的方程,再利用抛物线的定义,将点A到抛物线焦点的距离转化为点A到准线的距离.
解答: 解:∵抛物线y2=2px过点A(8,-8),∴64=16p,
∴p=4,
∴抛物线的标准方程为:y2=8x,其准线方程为x=-2,
∴点A到抛物线焦点的距离为8+2=10.
故答案为:10.
点评:本题考查抛物线的标准方程,考查抛物线定义的运用,正确运用抛物线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知H是△ABC的垂心,BE是AC边上的高,B(-2,0),C(6,0),
BE
=3
HE

(1)求点H的轨迹方程;
(2)若斜率为1的直线l与点H轨迹交于M、N两点,求
OM
ON
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同、质量相等的5个球,其中有2个白球和3个黑球,从中随机摸出一个球,放回后再摸出一个球,则两次摸出的球颜色恰好相同的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆C与y轴的交点,若以F1,F2,P三点为顶点的等腰三角形一定不可能为钝角三角形,则椭圆C的离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算1+3+5+…+2007的算法程序框图,需要填入的内容是:
 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
为两个非零向量,若
p
=
a
|
a
|
+
b
|
b
|
,则|
p
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5个人排成一排,其中甲不与乙相邻,则丙与丁必须相邻,则不同的排法总数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=1,|
b
|=2,|
c
|=3,<
a
b
>=60°,则|
a
+
b
+
c
|的最小值为
 
,最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE:EB=AF:FD=1:4,又H,G分别为BC,CD的中点,则(  )
A、BD∥平面EFG,且四边形EFGH是矩形
B、EF∥平面BCD,且四边形EFGH是梯形
C、HG∥平面ABD,且四边形EFGH是菱形
D、EH∥平面ADC,且四边形EFGH是平行四边形

查看答案和解析>>

同步练习册答案