精英家教网 > 高中数学 > 题目详情
5.化简下列各式:
(1)sin2α+sin2β-sin2αsin2β+cos2αcos2β;
(2)$\frac{sin(kπ-α)cos[(k-1)π-α]}{sin[(k+1)π+α]cos(kπ+α)}$(k∈Z)

分析 (1)利用sin2α+cos2α=1,能求出结果.
(2)利用诱导公式进行化简求值.

解答 解:(1)sin2α+sin2β-sin2αsin2β+cos2αcos2β
=sin2α+sin2β(1-sin2α)+cos2αcos2β
=sin2α+sin2βcos2α+cos2αcos2β
=sin2α+(sin2β+cos2β)cos2α
=sin2α+cos2α
=1.
(2)$\frac{sin(kπ-α)cos[(k-1)π-α]}{sin[(k+1)π+α]cos(kπ+α)}$(k∈Z)
∴当k为奇数时,原式=$\frac{sinαcosα}{sinαcosα}$=1,
当k为偶数时,原式=$\frac{-sinα(-cosα)}{-sinαcosα}$=-1.

点评 本题考查三角函数化简求值,是中档题,解题时要认真审题,注意同角三角函数关系式及诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.有四个命题:①若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,则$\overrightarrow{p}$与$\overrightarrow{a}$、$\overrightarrow{b}$共面;②若$\overrightarrow{p}$与$\overrightarrow{a}$、$\overrightarrow{b}$共面,则$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$;③若$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$,则P,M,A,B共面;④若P,M,A,B共面,则$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是各项均为正数的等比数列,且a1a2…a18=218
(1)若a5+a14=5,求数列{an}的公比q;
(2)若公比q=2,求a3a6a9…a18的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{lg(-x),x<0}\end{array}\right.$,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是(  )
A.(-∞,-2]B.[1,+∞)C.[-2,1]D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知两个非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:对任意λ∈R恒有|$\overrightarrow{a}$-$λ\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow{b}$|,则:
①若|$\overrightarrow{b}$|=8,则$\overrightarrow{a}•\overrightarrow{b}$=32;
②若$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{6}$,则$\frac{|2\overrightarrow{a}+t•\overrightarrow{b}|}{|\overrightarrow{b}|}$的最小值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,x∈(-$\frac{π}{6}$,$\frac{π}{3}$),求角x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=|cosx+$\frac{1}{2}$|的周期为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.己知等差数列{an}的前n项和为Sn,满足S8=8a5+1,则该数列的公差是(  )
A.-$\frac{1}{12}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把4个元素的集合划分为2个非空集,其中分为两个个数相同的集合的概率为$\frac{3}{7}$.

查看答案和解析>>

同步练习册答案