精英家教网 > 高中数学 > 题目详情
7.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AB=2,AC=1,E,F为BC的三等分点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{10}{9}$.

分析 根据题意,得到三角形为直角三角形,由$\overrightarrow{AB}$、$\overrightarrow{AC}$求出$\overrightarrow{AE}$,$\overrightarrow{AF}$,即可求出$\overrightarrow{AE}$•$\overrightarrow{AF}$的值.

解答 解:由于在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,
则∠BAC=90°,
由于E,F为BC的三等分点,
则$\overrightarrow{CB}$=$\overrightarrow{AB}$-$\overrightarrow{AC}$,$\overrightarrow{CF}$=$\frac{1}{3}\overrightarrow{CB}$,$\overrightarrow{CE}=\frac{2}{3}\overrightarrow{CB}$,
又有$\overrightarrow{AE}$=$\overrightarrow{AC}+\overrightarrow{CE}$,$\overrightarrow{AF}$=$\overrightarrow{AC}+\overrightarrow{CF}$,
则$\overrightarrow{AE}$=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,$\overrightarrow{AF}$=$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$,
又由AB=2,AC=1,
故$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{2}{9}{\overrightarrow{AB}}^{2}+\frac{2}{9}{\overrightarrow{AC}}^{2}$=$\frac{10}{9}$
故答案为:$\frac{10}{9}$.

点评 本题考查平面向量数量积的运算,熟练掌握向量的运算法则和数量积运算是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.给出下列几个命题:
①设a=lge,b=(lge)2,c=lg$\sqrt{e}$,则b<c<a;
②“0<a≤$\frac{1}{5}$”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的充分必要条件;
③已知平面向量α,β(α≠0,α≠β),满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围是(0,$\frac{2\sqrt{3}}{3}$];
④在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c其外接圆的半径R=$\frac{5\sqrt{6}}{36}$,则(a2+b2+c2)($\frac{1}{si{n}^{2}A}$$+\frac{1}{si{n}^{2}B}$$+\frac{1}{si{n}^{2}C}$)的最小值为$\frac{25}{6}$.
其中正确命题为①④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|2x-1|-|x+1|,
(Ⅰ)求f(x)<0的解集;
(Ⅱ)当x<-1时,f(x)>f(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x(1-ax)2的导数为y′=1-4ax+3a2x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+2-a}{x+1}$,其中a∈R.
(1)当函数f(x)的图象关于点P(-1,3)成中心对称时,求a的值;
(2)若函数f(x)在(-1,+∞)上单调递减,求a的取值范围;
(3)若a=2,求函数f(x)在区间(-∞,-2)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若离散型随机变量X服从两点分布,且D(X)=0.21,则E(X)=(  )
A.0.3B.0.7C.0.3或0.7D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=-$\frac{2}{3}$,α∈(π,$\frac{3π}{2}$),cosβ=$\frac{3}{4}$,β∈($\frac{3π}{2}$,2π),求cos(β-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求导:
(1)y=1+sin$\frac{x}{2}$cos$\frac{x}{2}$;
(2)y=(x-2)ln(2x-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥2(x-3)\end{array}\right.$,则z=2x+y的最小值为(  )
A.6B.4C.-2D.-4

查看答案和解析>>

同步练习册答案