精英家教网 > 高中数学 > 题目详情
7.如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关是S△ABC2=S△BCO•S△BCD

分析 这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,我们可以类比这一性质,推理出若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO•S△BCD

解答 解:由已知在平面几何中,
若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则S△ABC2=S△BCO•S△BCD
故答案为S△ABC2=S△BCO•S△BCD

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知直线3x-4y-6=0与圆x2+y2-2y+m=0(m∈R)相切,则m的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设[x]表示不超过x的最大整数,如[4.3]=4,[-4,3]=-5.化简:$\frac{1}{[\sqrt{1×2}]×[\sqrt{2×3}]×[\sqrt{3×4}]}$+$\frac{1}{[\sqrt{2×3}]×[\sqrt{3×4}]×[\sqrt{4×5}]}$+…+$\frac{1}{[\sqrt{n×(n+1)}]×[\sqrt{(n+1)×(n+2)}]×[\sqrt{(n+2)×(n+3)}]}$(结果用n表示,其中n是大于0的整数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x
(1)求y=f(x)的解析式;
(2)求y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若MP和OM分别是角α=$\frac{7π}{8}$的正弦线和余弦线,那么下列结论中正确的是(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数f(x)=cos2x-sinx的最大值;
(2)求函数f(x)=cos2x-asinx的最小值.(用含a的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对变量X与Y的卡方统计量Χ2的值,说法正确的是(  )
A.Χ2越大,“X与Y有关系”可信程度越小
B.Χ2越小,“X与Y有关系”可信程度越小
C.Χ2越接近0,“X与Y无关”程度越小
D.Χ2越大,“X与Y无关”程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数y=x3-2x,P(1,-1)为函数图象上的点,
(1)求函数图象在点P处的切线方程;
(2)求该切线与坐标轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三点不能构成三角形,则实数k应满足的条件是(  )
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

同步练习册答案