精英家教网 > 高中数学 > 题目详情
16.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ x-y≥0\\ y≥-1\end{array}\right.$,则目标函数z=2x+y的最大值为5.

分析 画出满足条件的平面区域,求出角点的坐标,结合图象求出z的最大值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x+y-2=0}\\{y=-1}\end{array}\right.$,解得A(3,-1),
由z=2x+y得:y=-2x+z,
平移直线y=-2x,结合图象直线过A(3,-1)时,z最大,
z的最大值是5,
故答案为:5.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,a1=1,an•an+1=$\frac{n+2}{n}$cos(n+1)π,设Tn为数列{an}的前n项的积,则T99=-50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列四个命题:
①幂函数一定是奇函数或偶函数;
②任意两个幂函数图象都有两个以上交点;
③如果两个幂函数的图象有三个公共点,那么这两个幂函数相同;
④图象不经过点(-1,1)的幂函数一定不是偶函数
其中为真命题的是④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(x2+$\frac{1}{\sqrt{x}}$)5展开式中,常数项为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,2,3,4},B={x∈R|x≤3},则A∩B=(  )
A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若“?x∈R,x2+2x+a≥0”是假命题,则实数a的取值范围为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,给出下列结论:
①A>B>C,则sinA>sinB>sinC;
②必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
③若sin2A+sin2B>sin2C,则△ABC是钝角三角形;
④若$\frac{a}{{cos\frac{A}{2}}}$=$\frac{b}{{cos\frac{B}{2}}}$=$\frac{c}{{cos\frac{C}{2}}}$,则△ABC是等边三角形.
其中正确的命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,b>0,且log4a=log6b=log9(5a+2b),求$\frac{a}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知n为满足S=a+${C}_{27}^{1}$+${C}_{27}^{2}$+${C}_{27}^{3}$+…+${C}_{27}^{27}$(a≥3)能被9整除的正数a的最小值,则(x-$\frac{1}{x}$)n的展开式中,系数最大的项为(  )
A.第6项B.第7项C.第11项D.第6项和第7项

查看答案和解析>>

同步练习册答案